• Title/Summary/Keyword: Electron collision cross sections set

Search Result 55, Processing Time 0.021 seconds

Ionization and Attachment Coefficients in CF4 (CF4 기체에서의 전리와 부착계수)

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.1
    • /
    • pp.27-31
    • /
    • 2011
  • In this paper, the electron transport characteristics in $CF_4$ has been analysed over the E/N range 1~300[Td] by a two-term approximation Boltzmann equation method and by a Monte Carlo simulation. The motion has been calculated to give swarm parameters for the electron drift velocity, longitudinal diffusion coefficient, the ratio of the diffusion coefficient to the mobility, electron ionization and attachment coefficients, effective ionization coefficient, mean energy, collision frequency and the electron energy distribution function. The electron energy distribution function has been analysed in $CF_4$ at E/N=5, 10, 100, 200 and 300[Td] for a case of the equilibrium region in the mean electron energy and respective set of electron collision cross sections. The results of Boltzmann equation and Monte Carlo simulation have been compared with experimental data by Y. Nakamura and M. Hayashi. The swarm parameter from the swarm study are expected to serve as a critical test of current theories of low energy electron scattering by atoms and molecules, in particular, as well as crucial information for quantitative simulations of weakly ionized plasmas.

Analysis of electron transport properties in $SF_6$+He mixtures gas used by MCS-BE (MCS-BE에 의한 $SF_6$+He 혼합기체의 전자수송특성 해석)

  • 서상현;하성철;유희영;김상남;송병두
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.159-162
    • /
    • 1998
  • This paper describes the electron transport characteristics in $SF_6$+He gas calculated for range of E/N values from 50~700[Td] by the Monte Carlo simulation and Boltzrnann equation method using a set of electmn collision cross sections determined by the authors and the values of electron swarm parameters are obtained by M F method. The results gained that the values of the electron swarm parameters such as the electron drift velocity, the electron ionization or attachment coefficents, longitudinal and h-ansverse diffusion coefficients agree with the experimental and theoretical for a range of E/N.

  • PDF

The study of electron transport coefficients in pure $CO_2$ by 2-term approximation of the Boltzmann equation (2항근사 볼츠만 방정식을 이용한 $CO_2$분자가스의 전자수송계수의 해석)

  • Jeon, Byung-Hoon;Kim, Ji-Yeon;Kim, Song-Gang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.164-167
    • /
    • 2001
  • The electron transport coefficients, the electron drift velocity W, the longitudinal diffusion coefficient $ND_L$ and $D_L/{\mu}$, in pure $CO_2$ were calculated over the wide E/N range from 0.01 to 500 Td at 1 Torr by two-term approximation of the Boltzmann equation for determination of electron collision cross sections set and for quantitative characteristic analysis of $CO_2$ molecular gas. And for propriety of two-term approximation of Boltzmann equation analysis, the calculated results compared with the electron transport coefficients measured by Nakamura.

  • PDF

Ionization and Attachment Coefficients in Mixtures of $SF_6$ and He ($SF_6-He$ 혼합기체의 전리와 부착계수)

  • Kim, Sang-Nam
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.342-345
    • /
    • 2005
  • This paper describes the electron energy distribution function characteristics in $SF_6-He$ gas calculated for range of E/N values from $50{\sim}700[Td]$ by the Monte Carlo simulation(MCS) and Boltzmann equation(BE) method using a set of electron collision cross sections determined by the authors and the values of electron swarm parameters are obtained by time of flight(TOF) method. The results gained that the values of the electron swarm parameters such as the electron drift velocity, the electron ionization or attachment coefficients, longitudinal and transverse diffusion coefficients agree with the experimental and theoretical for a range of E/N. The results of Boltzmann equation and Monte carlo simulation have been compared with experimental data by Pollock, Ohmori, cottrell and Walker.

  • PDF

Energy Distribution Function for Electrons in $SF_6$+He mixtures gas used by MCS-BEq (MCS-BEq에 의한 $SF_6$-He 혼합기체의 에너지 분포함수)

  • Seong, Nak-Jin;Kim, Sang-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2004.07e
    • /
    • pp.41-44
    • /
    • 2004
  • This paper describes the electron transport characteristics in $SF_6$-He gas calculated for range of E/N values from 50${\sim}$700[Td] by the Monte Carlo simulation(MCS) and Boltzmann equation(BEq) method using a set of electron collision cross sections determined by the authors and the values of electron swarm parameters are obtained by TOF method. The results gained that the values of the electron swarm parameters such as the electron drift velocity. the electron ionization or attachment coefficients. longitudinal and transverse diffusion coefficients agree with the experimental and theoretical for a range of E/N.

  • PDF

Analysis of Energy Distribution Function in $SiH_4$ Gas ($SiH_4$ 가스의 에너지 분포함수 관한 연구)

  • Seong, Nak-Jin;Kim, Sang-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2001.07e
    • /
    • pp.76-79
    • /
    • 2001
  • Energy distribution function in $SiH_4$ has been analysed over the E/N range $0.5{\sim}300Td$ and Pressure value 0.5, 1.0, 2.5 Torr by a two-term approximation Boltzmann equation method and by a Monte Carlo simulation. The motion has been calculated to give swarm parameters for the electron drift velocity, diffusion coefficient, electron ionization, mean energy and the electron energy distribution function. The electron energy distribution function has been analysed in $SiH_4$ at E/N=30, 50Td for a case of the equilibrium region in the mean electron energy and respective set of electron collision cross sections.

  • PDF

The study of electron transport coefficients in pure Xe by 2-term approximation of the Boltzmann equation (2항근사 볼츠만 방정식을 이용한 Xe분자가스의 전자수송계수의 해석)

  • Ma, Su-Young;Jeon, Byung-Hoon;Kim, Song-Gang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.174-177
    • /
    • 2001
  • The electron transport coefficients, the electron drift velocity W, the longitudinal diffusion coefficient $ND_L$ and $D_L/{\mu}$, in pure Xe were calculated over the wide E/N range from 0.01 to 500 Td at 1 Torr by two-term approximation of the Boltzmann equation for determination of electron collision cross sections set and for quantitative characteristic analysis of Xe molecular gas.

  • PDF

The study of electron transport coefficients in pure Ne by 2-term approximation of the Boltzmann equation (2항근사 볼츠만 방정식을 이용한 Ne분자가스의 전자수송계수의 해석)

  • Jeon, Byung-Hoon;Gang, Myung-Hee;Kim, Song-Gang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.182-185
    • /
    • 2001
  • The electron transport coefficients, the electron drift velocity W, the longitudinal diffusion coefficient $ND_L$ and $D_L/{\mu}$, in pure Ne were calculated over the wide E/N range from 0.01 to 300 Td at 1 Torr by two-term approximation of the Boltzmann equation for determination of electron collision cross sections set and for quantitative characteristic analysis of Ne molecular gas.

  • PDF

Analysis of electron transport properties in $SF_6+N_2$ mixtures gas used by MCS-BE (MCS-BE에 의한 $SF_6+N_2$ 혼합기체의 전자수송특성 해석)

  • 서상현;하성철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.696-699
    • /
    • 1999
  • The electron transport coefficients in $SF_6+N_2$ gas is analysed in range of E/N values from 100~900(Td) by a Monte Carlo simulation and Boltzmann method, using a set of electron collision cross sections determined by the authors. The result of the Monte Carlo simulation such as electron drift velocity, ionization and electron attachment coefficients, longitudinal and transverse diffusion coefficients in nearly agreement with the respective experimental and theoretical for a range of E/N.

  • PDF

The study on the electron transport coefficients in Neon gas by 2-tenn approximation of the Boltzmann Equation (2항근사 볼츠만 방정식을 이용한 Ne의 전자수송재수 연구)

  • Jeon, Byoung-Hoon;Ha, Sung-Chul;Song, Byoung-Doo
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.236-238
    • /
    • 2003
  • The electron transport coefficients, the electron drift velocity W, the longitudinal diffusion coefficient $ND_L$ and $D_L/\mu$, in pure Ne were calculated over the wide E/N range from 0.01 to 800 Td at 1 Torr by two-term approximation of the Boltzmann equation for determination of electron collision cross sections set and for quantitative characteristic analysis of Ne molecular gas.

  • PDF