• Title/Summary/Keyword: Electron beam weld

Search Result 42, Processing Time 0.027 seconds

MECHANICAL PROPERTIES OF TITANIUM CONNECTORS TREATED BY VARIOUS WELDING TECHNIQUES (용접방법에 의한 타이타늄 연결부의 기계적 성질에 관한 연구)

  • Lee, Soo-Young;Chang, Ik-Tae;Heo, Seong-Joo;Yim, Soon-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.5
    • /
    • pp.545-566
    • /
    • 1999
  • The use of pure titanium and titanium alloys have been increased recently in fixed, removable prosthodontics and implant fields as a framework. But when they were used for superstructures of implant or metal framework of removable prosthesis, welding is necessary to reconnect the fracture site to control the casting distortions. To overcome the difficulties in soldering the titanium due to high oxidation property, much effort have been devoted. In this study, some of mechanical properties were compared between pure titanium and Ti-6Al-4V alloy by using after welding, electron beam welding technique and tungsten arc welding. Mechanical properties such as tensile strength, yield strength, elongation and microhardness were measured. And, in order to compare the effect of welding site and surrounding metal tissue according to the welding condition, SEM photographs were taken and element distribution was observed by Wave Dispersion Spectroscopy. Through analyses of the data, following results were obtained; 1. In items such as tensile strength, yield strength and elongation according to the welding techniques of pure titanium, only tungsten arc welded group showed significant lower value than other groups(P<0.05). 2. In items such as tensile strength and yield strength according to the welding techniques of Ti-6Al-4V alloy, control group and tungsten arc welded group showed significant difference among all the groups(P<0.05). 3. Ti-6Al-4V alloy exhibited significantly greater elongation than control group when the laser welding method and electron beam welding method were used, and elongation showed increasing tendency. 4. Pure titanium specimens exhibited increasing tendency of microhardness regardless of the weld-ing technique applied, and especially tungsten arc welded group demonstrated a great increase of microhardness than parent metal. 5. There was no hardness change in laser welded group and electron beam welded group of Ti-6Al-4V alloy, but in tungsten arc welded group, hardness changed greatly from parent metal to weld seam. 6. Through the metallographic examination and scanning electron microscopy, laser welding caused central fusion and recristallizations were formed and tungsten arc welding caused localized fusion to 0.3-0.7mm from the surface.

  • PDF

Welding Properties of Heat-resistant Alloys for Liquid Thruster (액체 추력기용 내열합금 소재에 대한 용접 특성 연구)

  • Ryu Sang-Hyun;Lee Jae-Hoon;Kim Jeong-O;Kim Jung-Hun;Lee Jae-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.177-183
    • /
    • 2005
  • In this work, Inconel 600, Inconel 625 and Haynes 230 are welding using Nd:YAG laser and electron bear. These heat-resistant alloys are typically used for the liquid thruster. To examine, the affects of experimental parameters on weld ability, the plate welding of these materials were carried out using both Nd:YAG laser and electron bear. Also, the micro-structure, micro-hardness, and tensile strength of the specimens were analyzed. from the analysis of the experimental results of laser and electron beam welding, we have obtained the optimal welding conditions.

  • PDF

Evaporating Particle Behaviors and plasma Parameters by Spectroscopic Method in laser Welding (레이저 용접시 분광학적 수법에 의한 증발입자의 거동과 플라즈마 물성의 계측)

  • 김윤해
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.514-522
    • /
    • 1999
  • The laser-induced plasma affects greatly on the results of welding process. moreover selective evaporation loss of alloying elements leads to change in chemical composition of weld metal as well as the mechanical properties of welded joint. this study was undertaken to obtain a fundamental knowledge of pulsed laser welding phenomena especially evaporation mechanism of different aluminum alloys. The intensities of molecular spectra of AlO and MgO were different each other depeding on the power density of a laser beam Under the low power density condition the MgO band spectrum was predominant in intensity while the AlO spectra became much stronger with an increase in the power density. These behaviors have been attributed to the difference in evaporation phenomena of Al and Mg metals with different boiling points and latent heats of vaporization. The time-averaged plasma temperature and electron number density were determined by spectroscopic methods and consequently the obtained temperature was $3,280{\pm}150K$ and the electron number density was $1.85{\times}10^{19}\;l/m^3$.

  • PDF

A Study on Pulsed Nd:YAG Laser Welding of Electron Gun in Braun Tubes (I) - Characteristics of Beam Output Energy and Optical Parameters - (브라운관 전자총 부품의 펄스 Nd:YAG레이저 용접에 관한 연구 (I) - 빔의 출력특성과 광학변수 -)

  • 김종도;하승협;조상명
    • Journal of Welding and Joining
    • /
    • v.20 no.4
    • /
    • pp.525-534
    • /
    • 2002
  • During laser spot welding of the braun tube electron gun, phenomena such as serious spattering and oxidative reaction, etc. were occurred. The spatter occurred from weld pool affects the braun tube, namely it blocks up a very small hole on the shadow mask and causes short circuit between two roles of the electron gun. We guessed that high power density and oxidative reaction are main sources of these problems. So, we studied to prevent and to reduce spatter occurring in spot welding of the braun tube electron gun using pulsed Nd:YAG laser. The characteristics of laser output power was estimated, and the loss of laser energy by optical parameter and spatter was measured by powermeter. The effects of welding parameters, laser defocused distance and incident angle, were investigated on the shape and penetration depth of the laser welded bead in flare and flange joints. From these results, the laser peak power was a major factor to control penetration depth and to occur spatter. It was found that the losses of laser energy by optic parameter and sticked spatter affect seriously laser weldability of thin sheets. The deepest penetration depth is gotten on focal position, and a "bead transition" occurred with a slight displacement of focal position relative to the workpiece surface and the absorption rate of the laser energy is affected by the shape factor of the workpiece. When we changed the incident angle of laser beam, the penetration depth was decreased a little with increasing of the incident angle, and the bead width was increased. The spattering was prevented by considering laser beam energy and incident angle.ent angle.

Effect of Heat Treatment on Joint Strength of 300Grade 18% Ni Maraging Steel Sheet Welded with Electron Beam (전자비임 용접된 300Grade 18% Ni 마르에이징강 박판의 이음강도에 미치는 열처리의 방향)

  • Jung, B.H.;Kim, H.G.;Kang, S.B.;Kim, W.Y.;Park, H.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.4
    • /
    • pp.185-193
    • /
    • 1993
  • The effect and Condition of heat treatment on the tensile strength of welded joint was investigated in 300 grade 18% Ni-Co-Mo-Ti maraging steel sheets welded with electron beam. A good tensile strength of welded joint was obtained by following heat treatment cycle ; At $1100^{\circ}C$ the specimen was high temperature solution treated for 1 hour and then it was repeated solution treated at $900^{\circ}C$, $820^{\circ}C$ for 1 hour respectively to recrystallize the coarsened ${\gamma}$ grain. These heat treatment cycle was completed by an final aging heat treatment at $480^{\circ}C$ for 4 hour. Moreover, dissolution of dendrite, a significant decrease in seregation of Mo, Ti in weld metal were observed and also the coarsened ${\gamma}$ grain formed at $1100^{\circ}C$, $1200^{\circ}C$ changed to fine grain due to the effect of recrystallization.

  • PDF

Image Enhancement of Simplified Ultrasonic CT Using Frequency Analysis Method

  • Kim, kyung-Cho;Hiroaki Fukuhara;Hisashi Yamawaki
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1627-1632
    • /
    • 2002
  • In this paper, a simplified ultrasonic CT system, which uses the information in three directions, that is, 90°, +45° and -45°about the inspection plane, is applied to the high strength steel, and the frequency analysis method for enhancing the C scan or CT image is developed. This frequency analysis method is based on the frequency response property of the material. By comparing the magnitudes in the frequency domain, the special frequency which shows a significant difference between the welded joint and base material was found and used to obtain a C scan or CT image. Experimental results for several kinds of specimens, having a welded joint by electron beam welding, a weld joint by arc welding, on a fatigue crack, showed that the obtained C scan or CT image has better resolution than the results of previous experiments using the maximum value of the received waveform.

Comparison on Autogenous Weldability of Stainless Steel using High Energy Heat Source (고에너지 열원에 따른 스테인리스강의 제살용접특성 비교)

  • Kim, Jong-Do;Lee, Chang-Je;Song, Moo-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1076-1082
    • /
    • 2012
  • Today the welding for LNG carrier is known to be possible using arc and plasma arc welding process. But because of the lower energy density, arc welding is inevitable to multi-pass welding for thick plate and has a limit of welding speed compared to laser which is high energy density heat source. When thick plate is welded, weld defect by multi-pass welding and heat-affected zone by high heat-input were formed. Therefore one-pass welding by key-hole has been considered to work out the problems. It is possible for Laser, electron beam, plasma process to do key-hole welding. Nowadays, plasma process has been used for welding membrane of cargo tank for LNG carrier instead of arc process. Recently, many studies have examined to apply laser process to welding of membrane. In this paper, weldability, microstructure and mechanical properties of stainless steel for LNG carrier welded by fiber laser were compared to those by plasma. As a result, although the laser welding has several times faster speed, similar properties and smaller weld and heat affected zone were obtained. Consequently, this study proves the superiority of fiber laser welding for LNG carrier.

A Study of Weldability for Pure Titanium by Nd:YAG Laser(II) - Welding Properties of Butt Welding - (순티타늄판의 Nd:YAG 레이저 용접성에 관한 연구(II) - 맞대기 용접 특성 -)

  • Kim, Jong-Do;Kwak, Myung-Sub;Song, Moo-Keun;Park, Seung-Ha
    • Journal of Welding and Joining
    • /
    • v.27 no.6
    • /
    • pp.68-73
    • /
    • 2009
  • Recently, as titanium and titanium alloys are being increasingly used in wide areas, there are on-going researches to obtain high quality weld zone. In particular, growing interest is being drawn to laser welding, which involves low heat input and large aspect ratio in various welding processes and can facilitate shield in atmospheric condition compared with electron beam welding. The first report covered the analysis of embrittlement by the bead color of weld zone through quantitative analysis of oxygen and nitrogen and measurement of hardness as basic experiment to apply laser welding to titanium. Results indicated that the element that affect embrittlement the most was nitrogen, and as embrittlement and oxygenation go on, bead color changed to silver, gold, brown, blue and gray. This study performed butt welding of pure titanium and STS304 by using 1kW CW Nd:YAG laser, and to find out basic physical properties, evaluated welding performance by laser output, welding speed, root gap and misalignment etc, and examined mechanical properties through tensile stress and Erichsen test. The reason particles of pure titanium welded metal and HAZ are greater than STS304 is because they are pure metal and do not include many impure elements that work as nuclei in case of resolidification, thus becoming coarse columnar crystals eventually. In addition, the reason STS304 requires more energy during welding than pure titanium is because the particle size of base metal is smaller.

A Study on Couplant Medium Improvement for Ultrasonic Inspection System with Water Immersion to Detect Weld Defects (용접결함 검사용 수침식초음파탐상기의 매질개선연구)

  • Jung, Dal-Woo;Choi, Nak-Sam;Park, Yong-Bae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.8-14
    • /
    • 2008
  • For nondestructive inspection of electron beam (EB) welding part in automotive power transmission assembly, a pulse-echo ultrasonic testing apparatus in water immersion has been applied using the ultrasonic waves with a frequency of 10MHz. However various problems have appeared during the ultrasonic inspection, which led to some significant mistakes in automatic quality evaluation of the welding parts. Experimental study showed that the state of water couplant medium containing some amount of contaminants, rusts and anti-corrosion agents had considerable influences on the reduction of ultrasonic amplitudes during wave propagation. The amplitude reduction depending on the coupling medium state could bring about some mis-diagnoses for defects in the welding parts. The results proposed that for a reliable inspection of defects in welds the state of water medium should be kept in about 15 volume fractions (vol.%) of anti-corrosion agents and in minimized contaminants.

Friction Stir Welding of Ferritice Stainless Steel (페라이트계 스테인리스강의 마찰교반접합)

  • Ahn, Byung-Wook;Choi, Don-Hyun;Yeon, Yun-Mo;Jung, Seung-Boo
    • Journal of Welding and Joining
    • /
    • v.32 no.2
    • /
    • pp.14-17
    • /
    • 2014
  • Ferritic stainless steels are widely used in the construction industry and in exhaust manifolds due to their low cost and relatively superior stress corrosion cracking resistance and pitting corrosion resistance compared to austenite stainless steels. Ferritic stainless steels are currently welded by various welding process including gas tungsten arc welding (GTAW), electron resistance welding (ERW) and laser beam welding. However, when these stainless steels are welded by fusion welding, some problems occur in the fusion zone (FZ) and heat affected zone (HAZ). First, the ductility of the weld is reduced due to the grain growth in the FZ and HAZ. Second, as its HAZ is frequently sensitized during welding, corrosion resistance deteriorates in this region due to the Cr depletion zone. To prevent these problems, it is recommended that ferritic stainless steels be welded with a low heat input. In this study, recent researches in the view of friction stir welded ferritic stainless steels are briefly reviewed.