• Title/Summary/Keyword: Electron beam irradiation

Search Result 460, Processing Time 0.03 seconds

Determination of byproducts after treatment in PCBs-containing transformer oils (PCBs 함유 절연유의 처리 후 부산물 배출특성 연구)

  • Shin, Sun Kyoung;Park, Jin Soo;Kang, Young Yeul;Hwang, Seung Ryul;Kim, Young Sik
    • Analytical Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.201-211
    • /
    • 2008
  • The treatment efficiency of PCBs containing wastes has been investigated. The samples treated by electron beam and de-chlorination method were analyzed to verify the byproducts before treatment and after treatment. In the treated samples by electron beam irradiation, PCBs were not detected by comparing the peak matching using the Korean official waste test method. On the other hand, PCBs congeners were detected by analyzing individual isotope method using HRGC/HRMS. Most of PCB congeners in waste were decomposed to 3-chlorobiphenyls, lower chlorinated congener produced during the treatment of electron beam. In the chemical dechlorination treatment, it was found that the concentrations of PCBs in treated samples were lower than those of regulation criteria in Waste & POPs management law and the after treatment concentration were satisfied to the regulation criteria. Also, dioxins were not observed after the physio-chemical treatment processes of PCBs containing wastes.

Effects of Cooking Method and Temperature on the Lipid Oxidation of Electron-Beam Irradiated Hanwoo Steak. (가열방법 및 온도가 전자선 조사한 한우 steak의 지질산화에 미치는 영향)

  • Park T. S.;Shin T. S.;Lee J. I.;Park G. B.
    • Journal of Life Science
    • /
    • v.15 no.5 s.72
    • /
    • pp.840-846
    • /
    • 2005
  • This study was carried out to investigate the effect of electron beam irradiation and cooking temperature on physico-chemical characteristics and lipid oxidation of beef. A total of six beef carcasses ($280\∼300 kg$) that were quality grade $1^{+}$(marbling score No.7, meat color No.4, maturity No.1, texture No.1) was purchased at the commercial slaughter house. The carcasses were transported and washed using high pressure water, and pasteulized with $ 50\% $ ethyl alcohol in the laboratory. After the carcasses were deboned and trimmed, loin and round were taken out to make steak (1.5cm thickness) or ground beef respectively. Samples were wrap or vacuum packaged and irradiated with 0, 3, 4.5, 6 and 7.5 kGy using electron-beam accelerator at Samsung Heavy Industries Ltd. Co. (in Taejun). Irradiated samples were cooked with different methods(electronic pan and gas oven) and temperatures ($ 60^{\circ}C, 70^{\circ}C and 80^{\circ}C$) and used to measure fatty acid composition, TBARS, cholesterol oxide products and panel test scores. The content of saturated fatty acids increased by increasing heating temperature in oven boiling steak (OBS) and pan boiling steak (PBS), and there was no difference by electron-beam irradiation. Both irradiated and non-irradiated treatment were high as the heating temperature increased in TBARS by heating temperature in PBS (p < 0.05) and the amount of Malonaldehyde (MA), standard of fat deterioration, was increased in OBS (p < 0.05). Non-irradiated and 3, 6 kGy treatment produced about 2 fold amount of MA at $ 60^{\circ}C $ compared with $ 80^{\circ}C $. In comparison with PBS, OBS produced much amount of MA and a bit different from non-irradiated treatment but did not show no tendency. As irradiation levels and heating temperature increased, the amount of cholesterol oxides products was increased and also pan-heating method, direct heating method, significantly increased the degree of oxidation compared with oven-heating method, indirect heating method (p < 0.05).

Hydrophilic Modification of Porous Polyvinylidene Fluoride Membrane by Pre-irradiating Electron Beam (전자빔 전조사를 이용한 Polyvinylidene Fluoride 다공막의 친수화 개질)

  • Choi, Yong-Jin;Lee, Sung-Won;Seo, Bong-Kuk;Kim, Min
    • Membrane Journal
    • /
    • v.21 no.2
    • /
    • pp.118-126
    • /
    • 2011
  • A method of light pre-irradiation, one of methods modifying hydrophobic surface to hydrophilic surface in a membrane, was proposed to overcome the drawback of previous methods such as blending, chemical treatment and post-irradiation, Process of membrane preparation in the study was comprised of 4 parts as follows: firstly process of precursor preparation to introduce hydrophilic nature under atmosphere and aqueous vapor by irradiating electron beam (EB), secondly process of dope solution preparation to cast on non-woven fabrics, thirdly process of casting to prepare membrane and finally process of coagulation in non-solvent to form porous structure. The merit of this method might show simple process as well as homogenous modification compared to previous methods. To carry it out, precursor was prepared by irradiating EB to powder PVDF at 75~125 K Gray dose. Precursor prepared was analyzed by FTIR, EDS and DSC to confirm the introduction of hydrophilic function and its mechanism. From their results, it was inferred I conformed that hydrophilic function was hydroxy1 and it was introduced by dehydrozenation. Hydrophilicity of membranes prepared was evaluated by contact angle (pristine PVDF : $62^{\circ}$, 125 K Gray-PVDF$13^{\circ}$). Porosity was evaluated by mercury intrusion method, simultaneously morpholoy and surface pore size were observed by SEM phothographs. The result showed the trend that more dose of EB led to smaller pore size and to lower porosity (pristine PVDF : 82%, 125 K Gray-PVDF : 63%). Trend of water permeability was similar to result above (pristine PVDF : 892 LMH, 125 K Gray-PVDF : 355 LMH).

Laser-Direct Patterning of Nanostructured Metal Thin Films (나노구조 금속 박막의 레이저 직접 패터닝에 관한 연구)

  • Shin, Hyunkwon;Lee, Hyeongjae;Yoo, Hyeonggeun;Lim, Ki-Soo;Lee, Myeongkyu
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.2
    • /
    • pp.163-168
    • /
    • 2010
  • We here describe the laser-direct patterning of nanostructured metal thin films. This method involves light-matter interaction in which a pulsed laser beam impinging on the film generates a thermoelastic force that plays a role to detach the film from the substrate or underlying layers. A moderate cohesion of the nanostructured film enables localized desorption of the material upon irradiation by a spatiallymodulated laser beam, giving good fidelity with the transfered pattern. This photoresist-free process provides a simple high-resolution scheme for patterning metal thin films.

A Study on the Electron Beam Crosslinking of Acrylic Pressure Sensitive Adhesives for Polarizer Film (전자선 조사를 통한 편광필름용 아크릴계 고분자의 가교화 반응에 대한 연구)

  • Park, Jung-Jin;Choi, Hong-June;Ko, Hwan-Soon;Jeong, Eun-Hwan;Youk, Ji-Ho
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.344-350
    • /
    • 2012
  • New pressure sensitive adhesives (PSAs) for polarizer film were prepared by electron beam (e-beam) radiation to acrylic copolymers, and their adhesive properties were investigated. The acrylic copolymers were synthesized by free radical polymerization of $n$-butylacrylate (BA), 2-hydroxyethyl methacrylate (HEMA), and acrylic acid (AA). The acrylic copolymers were coated on PET release films to a thickness of 25 ${\mu}m$, laminated to polarizer films, and then radiated with e-beam at room temperature. Gel fractions of all the acrylic copolymers after e-beam radiation at 50 kGy were higher than 93%, and their crosslinking densities were increased with increasing the content of HEMA units. PSA prepared by e-beam radiation of acrylic copolymer synthesized with a feed ratio of BA/HEMA/AA = 89.5/10/0.5 (w/w/w) at a dose of 50 kGy exhibited the best adhesion performances in terms of peel strength, creep resistance, durability and reliability, and light leakage. It is expected that the preparation method of PSAs via e-beam irradiation will improve the producibility and workability of polarizer film for liquid crystal display.

Photocatalytic activities and surface properties of e-beam treated carbon paper deposited $TiO_2$ using Atomic Layer Deposition (ALD)

  • Kim, Myoung-Joo;Seo, Hyun-Ook;Luo, Yuan;Kim, Kwang-Dae;Kim, Young-Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.345-345
    • /
    • 2010
  • Thin film of $TiO_2$ deposited on carbon paper was fabricated by atomic layer deposition (ALD) using titanium isopropoxide (TTIP) and $H_2O$ as precursors. In this work, the photocatalytic activities of $TiO_2$ films with and without e-beam treatment were compared. The samples were treated by e-beam using e-beam energy of 1MeV and exposure range between 5 and 15kGy. The photocatalytic activity was evaluated by the photocatalytic degradation of methyleneblue (MB) under UV irradiation (365nm) at room temperature using an UV-vis spectroscopy. The surface properties were characterized by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The sample treated by the low radiation dose has more catalytic activity than other ones. SEM images show that the high radiation dose caused the $TiO_2$ to aggregation on carbon paper. Due to the aggregation of $TiO_2$, the partially exposed carbon paper was oxidized.

  • PDF

Quality Assurance Program of Electron Beams Using Thermoluminescence Dosimetry (열형광선량계를 이용한 전자선 품질보증 프로그램에 관한 연구)

  • Rah Jeong-Eun;Kim Gwe-Ya;Jeong Hee-Kyo;Shin Dong-Oh;Suh Tae-Suk
    • Progress in Medical Physics
    • /
    • v.16 no.2
    • /
    • pp.62-69
    • /
    • 2005
  • The purpose of this study has been performed to investigate the possibility of external audit program using thermoluminescence dosimetry for electron beam in korea. The TLD system consists of LiF powder, type TLD-700 read with a PCL 3 reader. In order to determine a calibration coefficient of the TLD system, the reference dosimeters are irradiated to 2 Gy in a $^{60}CO$ beam at the KFDA The irradiation is performed under reference conditions is water phantom using the IAEA standard holder for TLD of electron beam. The energy correction factor is determined for LiF powder irradiated of dose to water 2 Gy in electron beams of 6, 9, 12, 16 and 20 MeV (Varian CL 2100C). The dose is determined according to the IAEA TRS-398 and by measurement with a PTW Roos type plane-parallel chamber. The TLD for each electron energy are positioned in water at reference depth. In this study, to verify of the accuracy of dose determination by the TLD system are performed through a 'blind' TLD irradiation. The results of blind test are $2.98\%,\;3.39\%\;and\;0.01\%(1\sigma)$ at 9, 16, 20 MeV, respectively. The value generally agrees within the acceptance level of $5\%$ for electron beam. The results of this study prove the possibility of the TLD quality assurance program for electron beams. It has contributed to the improvement of clinical electron dosimetry in radiotherapy centers.

  • PDF

Hole Defects on Two-Dimensional Materials Formed by Electron Beam Irradiation: Toward Nanopore Devices

  • Park, Hyo Ju;Ryu, Gyeong Hee;Lee, Zonghoon
    • Applied Microscopy
    • /
    • v.45 no.3
    • /
    • pp.107-114
    • /
    • 2015
  • Two-dimensional (2D) materials containing hole defects are a promising substitute for conventional nanopore membranes like silicon nitride. Hole defects on 2D materials, as atomically thin nanopores, have been used in nanopore devices, such as DNA sensor, gas sensor and purifier at lab-scale. For practical applications of 2D materials to nanopore devices, researches on characteristics of hole defects on graphene, hexagonal boron nitride and molybdenum disulfide have been conducted precisely using transmission electron microscope. Here, we summarized formation, features, structural preference and stability of hole defects on 2D materials with atomic-resolution transmission electron microscope images and theoretical calculations, emphasizing the future challenges in controlling the edge structures and stabilization of hole defects. Exploring the properties at the local structure of hole defects through in situ experiments is also the important issue for the fabrication of realistic 2D nanopore devices.

Fabrication of Nanostructures on InP(100) Surface with Irradiation of Low Energy and High Flux Ion Beams (고출력 저에너지 이온빔을 이용한 InP(100) 표면의 나노 패턴형성)

  • Park Jong Yong;Choi Hyoung Wook;Ermakov Y.;Jung Yeon Sik;Choi Won-Kook
    • Korean Journal of Materials Research
    • /
    • v.15 no.6
    • /
    • pp.361-369
    • /
    • 2005
  • InP(100) crystal surface was irradiated by ion beams with low energy $(180\~225\;eV)$ and high flux $(\~10^{15}/cm^2/s)$, Self-organization process induced by ion beam was investigated by examining nano structures formed during ion beam sputtering. As an ion source, an electrostatic closed electron Hall drift thruster with a broad beam size was used. While the incident angle $(\theta)$, ion flux (J), and ion fluence $(\phi)$ were changed and InP crystal was rotated, cone-like, ripple, and anistropic nanostrucuture formed on the surface were analyzed by an atomic force microscope. The wavelength of the ripple is about 40 nm smaller than ever reported values and depends on the ion flux as $\lambda{\propto}J^{-1/2}$, which is coincident with the B-H model. As the incident angle is varied, the root mean square of the surface roughness slightly increases up to the critical angle but suddenly decreases due to the decrease of sputtering yield. By the rotation of the sample, the formation of nano dots with the size of $95\~260\;nm$ is clearly observed.

Superhydrophilic Surface Modification of Polyvinylidene Fluoride by Low Energy and High Flux ion Beam Irradiation (저에너지 고출력 이온빔을 이용한 polyvinylidene fluoride 표면의 초친수성화)

  • Park Jong-Yong;Jung Yeon-Sik;Choi Won-Kook
    • Korean Journal of Materials Research
    • /
    • v.15 no.6
    • /
    • pp.382-387
    • /
    • 2005
  • Polyvinylidene fluoride (PVDF) surface was irradiated and became superhydrophilic by low energy (180 eV) and high flux $(\~10^{15}/cm{\cdot}s)$ ion beam. As an ion source, a closed electron Hall drift thruster of $\phi=70mm$ outer channel size without grid was adopted. Ar, $O_2$ and $N_2O$ were used for source gases. When $N_2O^+$ and $O_2^+$ reactive gas ion beam were irradiated with the ion fluence of $5\times10^{15}/cm^2$, the wetting angle for deionized water was drastically dropped from $61^{\circ}\;to\;4^{\circ}\;and\;2^{\circ}$, respectively. Surface energy was also increased up to from 44 mN/m to 81 mN/m. Change of chemical component in PVDF surface was analyzed by x-ray photoelectron spectroscopy. Such a great increase of the surface energy was intimately related with the increase of hydrophilic group component in reactive ion irradiated PVDF surfaces. By using an atomic force microscopy, the root-mean-square of surface roughness of ion irradiated PVDF was not much altered compared to that of pristine PVDF.