• Title/Summary/Keyword: Electron beam irradiation

Search Result 463, Processing Time 0.029 seconds

Stabilization of PAN Nanofibers Using Electron Beam Irradiation and Thermal Compression Technique (전자선 조사와 열압축공정을 이용한 PAN 나노섬유의 안정화 및 특성분석)

  • Kim, Du Yeong;Jeun, Joon Pyo;Shin, Hye Kyoung;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.6 no.1
    • /
    • pp.55-59
    • /
    • 2012
  • Polyacrylonitrile (PAN)-based carbon fibers have been widely used due to their unique chemical, electrical, and mechanical properties. Electron beam irradiation has been extensively employed as means of altering properties of polymeric materials. Electron beam irradiation can induce chemical reactions in materials without any catalyst. Electron beam irradiation may be useful in accelerating the thermal compression stabilization of PAN nanofibers. To investigate the irradiation effect on PAN fibers, PAN nanofibers were irradiated by electron beam at 1,000~5,000 kGy. Irradiated and non-irradiated PAN nanofibers were heated at 180 and $220^{\circ}C$ without applying pressure for 15 min. Then 1 metric ton has been applied for 5 min. SEM images have been found that the fiber kept its morphological behavior after the hot pressing up to electron beam irradiated 1,000 kGy. DSC thermograms showed that the peak temperatures of the exothermic reactions were found to decrease with increasing electron beam irradiation doses and temperature. FT-IR spectra have been found to decrease $C{\equiv}N$ stretch band with increasing the electron beam irradiation dose. These results indicate that the modification of PAN via reactions such as cyclization is significantly enhanced by electron beam irradiation and thermal compression technique.

Degardatrion of Cellulosic Fibers by Electron Beam Irradiation

  • Han, Sung-Ok;Seo, Yung-Bum;Lee, Chun-Han
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.5
    • /
    • pp.20-25
    • /
    • 2007
  • Henequen fibers were treated by electron beam irradiation and by NaOH to make surface modification for better bonding in the manufacture of biocomposite. Impurity removal and carbonyl group formation were noticed in the previous study by electron beam irradiation, but extensive cellulose degradation were also noticed. To evaluate the effects of electron beam irradiation on cellulosic fibers further, henequen fibers, cotton pulp, cotton fibers, and cellophane were irradiated by electron beam, and their changes of cellulose viscosity, chemical composition, and tensile strength were measured and analyzed.

Effects of Electron Beam Irradiation on Pathogen Inactivation, Quality, and Functional Properties of Shell Egg during Ambient Storage

  • Kim, Hyun-Joo;Yun, Hye-Jeong;Jung, Samooel;Jung, Yeon-Kuk;Kim, Kee-Hyuk;Lee, Ju-Woon;Jo, Cheor-Un
    • Food Science of Animal Resources
    • /
    • v.30 no.4
    • /
    • pp.603-608
    • /
    • 2010
  • This study investigated the effects of electron beam irradiation on pathogens, quality, and functional properties of shell eggs during storage. A 1st grade 1-d-old egg was subjected to electron beam irradiation at 0, 1, 2, and 3 kGy, after which the number of total aerobic bacteria, reduction of inoculated Escherichia coli and Salmonella Typhimurium, egg quality, and functional properties were measured. Electron beam irradiation at 2 kGy reduced the number of E. coli and S. Typhimurium cells to a level below the detection limit (<$10^2$ CFU/g) after 7 and 14 d of storage. Egg freshness as measured by albumen height and the number of Haugh units was significantly reduced by 1-kGy irradiation. The viscosity of irradiated egg white was also significantly decreased by increased irradiation, whereas its foaming ability was increased. Electron beam irradiation also increased lipid oxidation in egg yolks. These results suggest that electron beam irradiation reduces the freshness of shell eggs while increasing the oxidation of egg yolk and improving important functional properties such as foaming capacity. Electron beam irradiation can also be applied to the egg breaking process since the irradiation reduces the viscosity of egg white, which can allow egg whites and yolks to be separated with greater efficiency.

Effect of Electron Beam Irradiation on the Properties of Softwood Unbleached Kraft Pulp (전자선 전처리에 따른 침엽수 미표백 크라프트 펄프의 특성평가)

  • Kim, Eun Hea;Lee, Ji Young;Jeun, Joon Pyo;Kim, Sun Young;Kim, Chul Hwan;Park, Jong Hye
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.5
    • /
    • pp.68-73
    • /
    • 2015
  • Electron beam irradiation is also an eco-friendly treatment compared to other physical and chemical treatments. In this study, we attempted to evaluate the possibilities of energy savings by applying electron beam irradiation to the refining process. After softwood unbleached kraft pulp (UKP) was irradiated with electron beams at 50 and 100 kGy, it was beaten in a laboratory beater, and then its freeness and fiber properties were analyzed. The physical properties of their fiber handsheet were also and measured. As the irradiation dose of the electron beam and the beating time increased, lower freeness and fiber lengths of the UKP were observed. Handsheets made from UKP that was irradiated by electron beam and beaten showed a reciprocal relationship with the irradiation dose of the electron beam, in particular, the strength of the handsheets decreased dramatically at 100 kGy of irradiation. Therefore, it was confirmed that electron beam irradiation is effective in reducing the beating time or beating energy. But the irradiation dose must be controlled under 50 kGy to minimize the loss of paper strength.

Microbial Decontamination of Angelica gigas Nakai Using Electron Beam Irradiation

  • Jin, You-Young;Shin, Hee-Young;Song, Kyung-Bin
    • Preventive Nutrition and Food Science
    • /
    • v.11 no.4
    • /
    • pp.344-347
    • /
    • 2006
  • This study evaluated the use of electron beam irradiation for decontamination of the Korean medicinal herb, Angelica gigas Nakai. Herb samples were irradiated at doses of 2, 8, and 16 kGy, respectively. Populations of microorganisms in Angelica gigas Nakai decreased by 2$\sim$3 log cycles at 8 kGy irradiation. Electron beam irradiation caused negligible changes in Hunter color L, a, and b values. Sensory evaluations of Angelica gigas Nakai confirmed that irradiation caused no significant changes in the organoleptic properties of the samples. These results suggest that electron beam-irradiated herbs retain a better microbial safety and sensory qualities, compared with the non-irradiated.

Dose Effect of Phytosanitary Irradiation on the Postharvest Quality of Cut Flowers

  • Kwon, Song;Kwon, Hye Jin;Ryu, Ju Hyun;Kim, Yu Ri
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.2
    • /
    • pp.171-178
    • /
    • 2020
  • The present study was conducted to determine the effects of electron beam irradiation on the postharvest quality of cut flowers. Cut flowers were irradiated with electron beam at 100, 200, 400, 600, 800, 1,000, and 2,000 Gy with a 10 MeV linear electron beam accelerator to evaluate their irradiation tolerance. Postharvest quality was determined by monitoring fresh weight loss, flower longevity, flower diameter, flowering rate, visual quality of flowers and leaves, and chlorophyll content. Cut flowers showed a radiation-induced damage with increasing the irradiation dose. Flower longevity and fresh weight of cut flowers decreased when the irradiation dose was increased. Flower bud opening was also inhibited in a dose-dependent manner. The effective irradiation doses for 10% reduction of postharvest quality (ED10) values were 144.4, 451.6, and 841.2 Gy in the 'Medusa' lily, 'Montezuma' carnation, and 'Rosina White' eustoma, respectively. Although tolerance of cut flowers to electron beam irradiation vary according to species, cultivars, or maturity stage conditions, it is conceivable that 'Montezuma' carnation and 'Rosina White' eustoma could be tolerated and maintained overall postharvest quality up to 400 Gy, the generic irradiation dose approved by the Animal and Plant Health Inspection Service (APHIS) and the International Plant Protection Convention (IPPC) for postharvest phytosanitary treatments.

Effect of Electron-beam Irradiation on Polymethoxylated Flavones Content of Citrus unshiu Pomaces

  • Kim, Jong-Wan;Kim, Min-Chul;Nam, Ki-Chang;Lee, Seung-Cheol
    • Preventive Nutrition and Food Science
    • /
    • v.14 no.4
    • /
    • pp.362-366
    • /
    • 2009
  • To determine the effect of electron-beam irradiation on the contents of polymethoxylated flavones (PMFs) extracts from citrus pomaces (CP), CP was irradiated at 0, 1, 2, or 5 kGy. Methanol extract of the irradiated CP were prepared and the PMF (nobiletin, sinensetin, and tangeretin) content of the extract was determined. Nobiletin and sinensetin of CP extract significantly increased with irradiation dose-dependent. However, electron-beam irradiation decreased the amount of tangeretin in the CP extract. These data suggest that irradiation can liberate phenolic compounds such as nobiletin or sinensetin, but tangeretin might have different pathway of conversion by irradiation. Therefore, irradiation can be a tool to change the composition of PMFs in CP.

Effect of Electron Beam Irradiation on Microbial Growth and Qualities in Astragalus membranaceus

  • Jin, You-Young;Shin, Hee-Young;Ku, Kyoing-Ju;Song, Kyung-Bin
    • Journal of Applied Biological Chemistry
    • /
    • v.49 no.4
    • /
    • pp.176-179
    • /
    • 2006
  • Electron beam irradiation was applied to examine the microbial growth and qualities of vacuum-packaged Astragalus membranaceus, a Korean medicinal herb. Samples were irradiated at dose of 2, 4, 8, 12, and 16 kGy, respectively. Microbiological data on A. membranaceus showed that populations of total bacteria, yeast and mold, total coliforms were significantly reduced with increase of irradiation dose. Populations of microorganisms in A. membranaceus were decreased by 2-3 log cycles at 8 kGy irradiation. Color measurements showed that electron beam treatment caused negligible changes in Hunter color L, a, and b values of A. membranaceus. Sensory evaluations showed that there were no significant changes among the samples. These results suggest that electron beam irradiated A. membranaceus have better microbial safety and qualities, compared with the non-irradiated control.

Effects of Low Dose Gamma Ray and Electron Beam Irradiation on Growth of Microorganisms in Beef During the Refrigerated Storage (저선량 감마선과 전자선조사가 우육의 저장중 미생물 생육에 미치는 효과)

  • 김우선;정명섭;고영태
    • Food Science of Animal Resources
    • /
    • v.18 no.3
    • /
    • pp.232-239
    • /
    • 1998
  • This experiment was conducted to investigate radurization effects of gamma ray and electron beam irradiation at 1.5 and 3.0 kGy on beef steaks during 8 days of storage at 5$^{\circ}C$. Total bacteria count, psychrotrophs, mesophiles and thermophiles were analyzed at 2 days intervals. Nonirradiated beef steak was used a scontrol Total bacteria counts, psychrotrophs, mesophiles and thermophiles of the control samples showed 3.03∼4.72 logCFU / g at 0 day and increased to 7.67∼10.90 logCFU / g during 8 days storage except thermophiles. Total bacteria counts, psychrotrophs and mesophiles of beef steaks at 8 days were significantly (p<0.05) decreased to 3.61∼5.43 logCFU / g by gamma ray and to 3.83∼7.02 logCFU / g by electron beam irradiation at 1.5 and 3.0 kGy. Thermophiles of all irradiated samples at any dose were not detectable through 8 days storage. These results suggested that both gamma ray and electron beam irradiation were effective to extend lag phase of bacterial growth of refrigerated beef. Gamma ray irradiation was better than electron beam irradiation in terms of radurization effects of beef.

  • PDF

The Effect of Electron Beam Irradiation on Chemical and Morphological Properties of Hansan Ramie Fibers

  • Lee, Jung Soon
    • Fashion & Textile Research Journal
    • /
    • v.15 no.3
    • /
    • pp.430-436
    • /
    • 2013
  • The purpose of this study investigates the effects of electron beam(EB) irradiation on the chemical and morphological properties of Hansan ramie fiber. Hansan ramie fibers were irradiated with electron beam doses of 0, 1, 3, 5 and 10kGy. The effect of electron beam irradiation on the chemical components of fibers as well as the surface chemical and morphological properties were investigated using chemical component analysis methods based on TAPPI standards, XPS, and SEM. The results indicate that the surface layers can be removed under suitable EB irradiation doses. Alcohol-benzene extraction and lignin content increases gradually with an increase in EB irradiation and reaching a maximum at an EB dose of 3kGy, and decreases at 10kGy. The surface chemical changes measured by XPS corresponded to the chemical composition analysis results. The C1 peak and the O/C ratio decreased with the removal of the multi-layer and primary layer by EB irradiation. The SEM images show the inter-fibrillar structure etched by EB irradiation up to 5kGy. At 10kGy, the surface structure of the ramie fiber shows highly aligned and distinctive striations in a longitudinal direction. The removal of these exterior layers of the fiber was confirmed by changes in surface morphology as observed in SEM images.