• Title/Summary/Keyword: Electron beam crosslinking

Search Result 21, Processing Time 0.019 seconds

Electron Beam-induced Crosslinking and Characterization of Polycaprolactone Films in the Presence of Various Crosslinking Agents

  • Kang, Dong-Woo;Jung, Chan-Hee;Hwang, In-Tae;Choi, Jae-Hak;Nho, Young-Chang
    • Journal of Radiation Industry
    • /
    • v.5 no.2
    • /
    • pp.107-112
    • /
    • 2011
  • Electron beam-induced crosslinking of polycaprolactone (PCL) films containing various crosslinking agents (CAs) was investigated in this study. PCL films containing various CAs prepared by a solution casting method were irradiated by electron beams at various absorption doses and the irradiated PCL films were investigated in terms of their crosslinking degree, thermal and mechanical properties, and biodegradability. Based on the results of the crosslinking degree measurement, triallyl isocyanurate was found to be most effective for the electron-beam induced crosslinking of PCL films. The results of the UTM, DMA, and TMA revealed that the thermal and mechanical properties of the crosslinked PCL films were greatly improved in comparison to those of the pure PCL. The results of the enzymatic degradation test revealed that the biodegradability of the crosslinked PCL films was reduced in comparison to that of the pure PCL.

Preparation and Characterization of poly(ethylene-co-vinyl acetate)/Magnesium Hydroxide Composites by Electron Beam Crosslinking (전자빔 가교에 의한 폴리(에틸렌-co-초산 비닐)/수산화 마그네슘 복합재료의 제조 및 평가)

  • Si-Hyeong Lee;Byoung-Min Lee;Hyun-Rae Kim;Sangwon Park;Jong-Seok Park;Yong Seok Kim;Sungmin Park;Jae-Hak Choi
    • Journal of Radiation Industry
    • /
    • v.17 no.3
    • /
    • pp.225-232
    • /
    • 2023
  • In this study, poly(ethylene-co-vinyl acetate)/magnesium hydroxide (EVA/MDH) composites were prepared by electron beam crosslinking. EVA as a matrix resin and MDH as a flame retardant were melt-blended and compression molded to prepare EVA/MDH composites. The prepared EVA/MDH composites were electron beam-irradiated at various absorbed doses of 50~200kGy. The effects of electron beam irradiation on the gel content, tensile strength, elongation-at-break, thermal properties, and flame retardancy of the composites were investigated. The gel content and tensile strength increased, while the elongation-at-break decreased with an increase in the absorbed dose due to the formation of crosslinked network structures. In addition, the thermal stability and flame retardancy improved as the absorbed dose increased. Therefore, the EVA/MDH composites prepared in this study can be used as an insulation material for flame-retardant and heat-resistant wires and cables.

Thermal Behavior and Abrasion Properties of Glass Fiber Reinforced Nylon 12 Crosslinked by Electron Beam Irradiation (전자선 가교된 유리섬유 강화 나일론 12의 열적 거동 및 내마모 특성)

  • Shin, Bum-Sik;Jeun, Joon-Pyo;Kim, Hyun-Bin;Kang, Phil-Hyun
    • Polymer(Korea)
    • /
    • v.35 no.1
    • /
    • pp.30-34
    • /
    • 2011
  • In this study, the effects of the electron beam irradiation on the thermal behavior and the abrasion properties of the glass fiber reinforced nylon 12 was investigated. The electron beam irradiation was carried out over a range of irradiation dose from 100 to 600 kGy with additive crosslinking agents such as triallyl cyanurate (TAC), triallyl isocyanurate (TAIC) and trimethylolpropane trimethacrylate (TMPTMA) for enhancing the crosslinking effects. The gel contents were increased dramatically above 200 kGy. It was verified that the degree of crosslinking depends on the radiation dose. The decreases of the melting temperature and the area of endothermic peak were observed as increasing the absorbed dose in the results of DSC analysis. The enhanced thermal stability was confirmed by the increases of decomposition temperature by electron beam irradiation. Furthermore, the negative deviations of the abrasion loss and the abrasion coefficients confirmed the improvement of the abrasion properties of irradiated nylon 12, as evidenced by SEM observation on the abrasion surfaces. The addition of the crosslinking agents to nylon 12 during effectively improved the thermal behavior and the abrasion properties of nylon 12 by the electron beam irradiation.

Preparation of EPDM/Polyamide12 Elastomers through Electron Beam Irradiation (전자선 조사를 통한 EPDM/Polyamide12 탄성체의 제조에 관한 연구)

  • Jung, Hyo Shin;Park, Jung Il;Kang, Phil-Hyun;Choi, Myung Chan;Chang, Young-Wook;Hong, Sung Chul
    • Polymer(Korea)
    • /
    • v.37 no.5
    • /
    • pp.571-578
    • /
    • 2013
  • Polyamide12 (PA12) is blended with ethylene propylene diene rubber (EPDM) at various compositions in the presence of maleated EPDM (mEPDM) to afford blend materials having the characteristics of thermoplastic elastomer (TPE). The EPDM/PA12 melt-blends are further irradiated with electron-beam (e-beam) at 0~100 kGy dosage, yielding selective crosslinking between EPDM chains while retaining melt-processibility originated from PA12 phase. mEPDM acts as a compatibilizer and affords additional improvements in mechanical properties of the EPDM/PA12 blend. With 25 kGy of e-beam irradiation and mEPDM, the EPDM/PA12 blends successfully exhibit TPE behaviors with reasonable elastomeric and mechanical properties.

Application of electron beam irradiation for studying the degradation of dye sensitized solar cells (전자선 조사를 통한 염료감응형 태양전지의 분해 연구)

  • Akhtar, M.Shaheer;Lee, Hyun-Cheol;Min, Chun-Ji;Khan, M.A.;Kim, Ki-Ju;Yang, O-Bong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.179-182
    • /
    • 2006
  • The effect of electron beam irradiation on dye sensitized solar cell (DSSC) has been studied to examine degradation of DSSC. The high-energy electron beam irradiation affects on the materials and performance of dye sensitized solar cells. We have checked the effects of electron beam irradiation of $TiO_2$ substrate with and without dye adsorption on the photovoltaic performances of resulting DSSCS and also studied the structural and electrical properties of polymers after irradiation. All solar cells materials were irradiated by electron beams with an energy source of 2MeV at different dose rates of 60 kGy, 120 kGy 240 kGy and 900 kGy and then their photoelectrical parameters were measured at 1 sun $(100 mW/cm^2)$. It was shown that the efficiency of DSSC was decreased as increasing the dose of e-beam irradiation due to lowering in $TiO_2$ crystallinity, decomposition of dye and oxidation of FTO glasses. On the other hand, the performance of solid-state DSSC with polyethylene oxide based electrolyte was improved after irradiation of e-beam due to enhancement of its conductivity and breakage of crosslinking.

  • PDF

A Study on the Electron Beam Crosslinking of Acrylic Pressure Sensitive Adhesives for Polarizer Film (전자선 조사를 통한 편광필름용 아크릴계 고분자의 가교화 반응에 대한 연구)

  • Park, Jung-Jin;Choi, Hong-June;Ko, Hwan-Soon;Jeong, Eun-Hwan;Youk, Ji-Ho
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.344-350
    • /
    • 2012
  • New pressure sensitive adhesives (PSAs) for polarizer film were prepared by electron beam (e-beam) radiation to acrylic copolymers, and their adhesive properties were investigated. The acrylic copolymers were synthesized by free radical polymerization of $n$-butylacrylate (BA), 2-hydroxyethyl methacrylate (HEMA), and acrylic acid (AA). The acrylic copolymers were coated on PET release films to a thickness of 25 ${\mu}m$, laminated to polarizer films, and then radiated with e-beam at room temperature. Gel fractions of all the acrylic copolymers after e-beam radiation at 50 kGy were higher than 93%, and their crosslinking densities were increased with increasing the content of HEMA units. PSA prepared by e-beam radiation of acrylic copolymer synthesized with a feed ratio of BA/HEMA/AA = 89.5/10/0.5 (w/w/w) at a dose of 50 kGy exhibited the best adhesion performances in terms of peel strength, creep resistance, durability and reliability, and light leakage. It is expected that the preparation method of PSAs via e-beam irradiation will improve the producibility and workability of polarizer film for liquid crystal display.

Fabrication of Electrospun Si-Zr-C Fibers by Electron Beam Irradiation (전자선 조사를 이용한 전기방사된 Si-Zr-C 섬유의 제조)

  • Seo, Dong Kwon;Jeun, Joon Pyo;Kim, Hyun Bin;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.4 no.3
    • /
    • pp.265-269
    • /
    • 2010
  • Silicon-based non-oxide ceramic carbide fiber is one of the leading candidate ceramic materials for engineering applications because of its excellent mechanical properties at high temperature and good chemical resistance. In this study, polycarbosilane(PCS) and zirconium butoxide were used as a precursor to prepare polyzirconocarbosilane (PZC) fibers. A polymer solution was prepared by dissolving PCS in zirconium butoxide (50/50 wt%). This solution was heated at $250^{\circ}C$ in a nitrogen atmosphere for 2 hour with stirring, and then dried in a vacuum oven for 48 hour. PZC fibers were fabricated using an electrospinning technique. The fibers were irradiated with an electron beam to induce structural crosslinking. Crosslinked PZC fibers were heat treated at $1,300^{\circ}C$ in a nitrogen atmosphere. The microstructures of PZC fibers were examined by SEM. Chemical structures of PZC fibers were examined by FT-IR and XRD. Thermal stability of PZC fibers was investigated by TGA.

A Study on Characterization of Polyethylene Separators Irradiated at Various Electron Beam Current Conditions (다양한 전자선 전류 조건에서 조사된 폴리에틸렌 분리막의 특성 연구)

  • Im, Jong-Su;Sohn, Joon-Yong;Shin, Jun-Hwa;Lim, Youn-Mook;Choi, Jae-Hak;Kim, Jeong-Soo;Nho, Young-Chang
    • Polymer(Korea)
    • /
    • v.34 no.1
    • /
    • pp.74-78
    • /
    • 2010
  • In this paper, crosslinked polyethylene (PE) separators for lithium secondary batteries were prepared by an electron beam irradiation under various beam currents and dose rates. The crosslinking degree increased up to maximum 71% with an increasing absorption dose and with a decreasing beam current. The PE separators irradiated at lower beam currents showed better thermal shrinkage (51%) and mechanical properties than the original PE separator and PE separators irradiated at higher beam current. The ionic conductivity ($1.01{\times}10^{-3}\;S/cm$) and electrolyte uptake (275%) of the crosslinked PE separators were comparable to the original PE separator.

Effect of Cationic Initiator Content on Electron-beam Curing of Difunctional Epoxy Resin (양이온 개시제 함량이 2관능성 에폭시 수지의 Electron-beam 경화에 미치는 효과)

  • Soo-Jin Park;Gun-Young Heo;Jae-Rock Lee;Dong Hack Suh
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.3
    • /
    • pp.250-256
    • /
    • 2003
  • In this work, the effect of cationic initiator content on the electron-beam (EB) curing process of diglycidylether of bisphenol-A (DGEBA) resin was studied using near-infrared spectroscopy (NIRS), thermogravimetric analysis (TGA), and critical stress intensity factor $(K_{IC})$. Benzylquinoxalinium hexafluoroantimonate (BQH) were used as an initiator and its content was varied from 0.5 to 3 phr. NIRS measurements showed that the hydroxyl group of EB-cured epoxy resin was increased with increasing the BQH content. Thermal stability and $K_{IC}$ value of EB-cured epoxy resin were increased with increasing the BQH content but were decreased above 2 phr content. These results could be attributed to the decrease of the conversion and degree of crosslinking. In another word, the conversion and degree of crosslinking were restricted by the incomplete network structure from high reactivity at the BQH content above 2 phr, resulting in decreasings of thermal stability and $K_{IC}$.

Effect of Trifunctional Monomers and Antioxidants on the Crosslinking Reaction of Polyethylene (폴리에틸렌의 가교반응에 미치는 삼관능성 단위체와 산화장지제의 영향)

  • Hyung Chick Pyun;Young Chul Lee;Kil Jeong Kim;Byung Mok Yoon
    • Nuclear Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.70-77
    • /
    • 1982
  • The crosslinking reaction and oxidative stability of low-density polyethylene were studied in the presence of trifunctional monomers and antioxidants with electron beam. The trifunctional monomers used in this study are Trimethylolpropane triacrylate(TMPTA), Trimethylolpropane trimethacrylate(TMPTM) and Triallyl cyanurate(TAC). And the antioxidants are Irganox 1010 (Pentaerythritoltetrakis[3-(3,5-di-t-butyl-4-hydroxyphenyl)-propionatel]), Santo-nox R(4,4'-Thio-bis(3-methyl-6-t-butylphenol)), Nocrac D(N-phenyl-$\beta$-naphthylamine) and Bis-phenol A(4,4'-Isopropylidene bisphenol). Among the monomers, TMPTA is the best crosslinking agent and prvides polyethylene with oxidative stability. Among the antioxidants, Nocrac D is the best antioxidant for polyethylene.

  • PDF