• Title/Summary/Keyword: Electron Transport Layer

Search Result 272, Processing Time 0.031 seconds

Fully Solution-Processed Green Organic Light-Emitting Diodes Using the Optimized Electron Transport Layers (최적화된 전자 수송층을 활용한 완전한 용액공정 기반 녹색 유기발광다이오드)

  • Han, Joo Won;Kim, Yong Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.7
    • /
    • pp.486-489
    • /
    • 2018
  • Solution-processed organic light-emitting diodes (OLEDs) have the advantages of low cost, fast fabrication, and large-area devices. However, most studies on solution-processed OLEDs have mainly focused on solution-processable hole transporting materials or emissive materials. Here, we report fully solution-processed green OLEDs including hole/electron transport layers and emissive layers. The electrical and optical properties of OLEDs based on solution-processed TPBi (2,2',2"-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole)) as the electron transport layer were investigated with respect to the spin speed and the number of layers. The performance of OLEDs with solution-processed TPBi exhibits a power efficiency of 9.4 lm/W. We believe that the solution-processed electron transport layers can contribute to the development of efficient fully solution-processed multilayered OLEDs.

Characteristic Improvements of Organic Light Emitting Diodes By Using Co-Evaporated Cathodes

  • Kwak, Y.H.;Lee, Y.S.;Park, J.H.;Choi, Jong-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.710-713
    • /
    • 2002
  • In order to improve the power efficiency of multi-layer organic light emitting diodes (OLEDs), electron injection into ETL(electron transport layer) from cathode at the interface between ETL and cathode was enhanced by interposing a proper electron injection layer at the interface. The HTL(hole transport layer) and ETL materials used were N, N'diphenyl- N, N' - bis(3-methylphenyl-1, 1'- biphenyl - 4, 4 'diamine (TPD) and tris (8-hydroxyquinoline) aluminum ($Alq_3$) respectively. Cathodes using co-evaporated Al-CsF, Al-KF, and Al-NaF composites are adopted to enhance the electrical and optical properties of OLEDs. OLEDs with alkaline metal-doped cathode show a luminance of as high as 35,000 cd/$m^2$, and external quantum efficiency about 1.35 %. In addition, they show higher power efficiency at all bias conditions and good reproducibility.

  • PDF

Device characteristics of blue phosphorescent organic light-emitting diodes depending on the electron transport materials

  • Lee, Hyun-Koo;Ahn, Hyuk;Lee, Chang-Hee
    • Journal of Information Display
    • /
    • v.12 no.4
    • /
    • pp.219-222
    • /
    • 2011
  • Iridium-(III)-bis[(4,6-di-fluorophenyl)-pyridinate-N,$C^2$' ]picolinate-based blue phosphorescent organic light-emitting diodes with different electron transport materials were fabricated. Each electron transport material had different electron mobilities and triplet energies. The device with 1,3,5-tri(m-pyrid-3-yl-phenyl)benzene had the highest external quantum efficiency (20.1%) and luminous current efficiency (33.1 cd/A) due to its high electron mobility and triplet energy. The operational stability of each device was also compared with that of the others. The device with 2,2',2"(1,3,5-benzenetriyl)tris-(1-phenyl-1H-benzimidazole) was found to have a longer lifetime than the other devices.

Performance of Three-Layered Organic Light-Emitting Diodes Using the Hole-Transport and Injection Layer of TPD and Teflon-AF, and the Electron-Injection Layer of Li2CO3 and LiF

  • Shin, Jong Yeol;Kim, Tae Wan;Kim, Gwi Yeol;Lee, Su Min;Hong, Jin Woong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.2
    • /
    • pp.89-92
    • /
    • 2017
  • The performance of three-layered organic light-emitting diodes (OLEDs) was investigated using TPD hole-transport and injection layers, Teflon-AF, and the electron-injection layer of $Li_2CO_3$ and LiF. The OLEDs were manufactured in a structure of TPD/$Alq_3$/LiF, TPD/$Alq_3$/$Li_2CO_3$, and AF/$Alq_3$/LiF using low-molecular organic materials. In three different three-layered OLEDs, it was found that the device with the TPD/$Alq_3$/LiF structure shows higher performance in maximum luminance, and maximum external quantum efficiency compared to those of the device with TPD/$Alq_3$/$Li_2CO_3$ and TPD/$Alq_3$/LiF by 35% and 17%, and 193% and 133%, respectively. It is thought that the combined LiF/Al cathode contributes to a reduced work function and improves an electrical conduction mechanism due to the electron injection rather than the hole transport, which then increases a recombination rate of charge carriers.

Effect of Air Exposure on ZnO Thin Film for Electron Transport Layer of Quantum Dot Light-Emitting Diode (ZnO 박막 전자수송층의 공기 노출에 의한 양자점 발광다이오드의 특성 변화)

  • Eunyong Seo;Kyungjae Lee;Jeong Ha Hwang;Dong Hyun Kim;Jaehoon Lim;Donggu Lee
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.455-461
    • /
    • 2023
  • We investigated the electrical characteristics of ZnO nanoparticles (NPs) with air exposure that is a widely used electron transport layer for quantum dot light-emitting diodes (QLEDs). Upon air exposure, we observed changes in the density of states (DOS) of the trap levels of ZnO NPs. In particular, with air exposure, the concentration of deep trap energy levels in ZnO NPs decreased and electron mobility significantly improved. Consequently, the air-exposed ZnO reduced leakage current by approximately one order of magnitude and enhanced the external quantum efficiency at the low driving voltage region of the QLED. In addition, based on the excellent conductivity properties, high-brightness QLEDs could be achieved.

High performance of inverted polymer solar cells

  • Lee, Hsin-Ying;Lee, Ching-Ting;Huang, Hung-Lin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.61.2-61.2
    • /
    • 2015
  • In the past decades, green energy, such as solar energy, wind power, hydropower, biomass energy, geothermal energy, and so on, has been widely investigated and developed to solve energy shortage. Recently, organic solar cells have attracted much attention, because they have many advantages, including low-cost, flexibility, light weight, and easy fabrication [1-3]. Organic solar cells are as a potential candidate of the next generation solar cells. In this abstract, to improve the power conversion efficiency and the stability, the inverted polymer solar cells with various structures were developed [4-6]. The novel cell structures included the P3HT:PCBM inverted polymer solar cells with AZO nanorods array, with pentacene-doped active layer, and with extra P3HT interfacial layer and PCBM interfacial layer. These three difference structures could respectively improve the performance of the P3HT:PCBM inverted polymer solar cells. For the inverted polymer solar cells with AZO nanorods array as the electronic transportation layer, by using the nanorod structure, the improvement of carrier collection and carrier extraction capabilities could be expected due to an increase in contact area between the nanorod array and the active layer. For the inverted polymer solar cells with pentacene-doped active layer, the hole-electron mobility in the active layer could be balanced by doping pentacene contents. The active layer with the balanced hole-electron mobility could reduce the carrier recombination in the active layers to enhance the photocurrent of the resulting inverted polymer solar cells. For the inverted polymer solar cells with extra P3HT and PCBM interfacial layers, the extra PCBM and P3HT interfacial layers could respectively improve the electron transport and hole transport. The extra PCBM interfacial layer served another function was that led more P3HT moving to the top side of the absorption layer, which reduced the non-continuous pathways of P3HT. It indicated that the recombination centers could be further reduced in the absorption layer. The extra P3HT interfacial layer could let the hole be more easily transported to the MoO3 hole transport layer. The high performance of the novel P3HT:PCBM inverted polymer solar cells with various structures were obtained.

  • PDF

Characteristics of Tin Oxide Thin Film Grown by Atomic Layer Deposition and Spin Coating Process as Electron Transport Layer for Perovskite Solar Cells (원자층 증착법과 용액 공정법으로 성장한 전자 수송층 산화주석 박막의 페로브스카이트 태양전지 특성)

  • Ki Hyun Kim;Sung Jin Chung;Tae Youl Yang;Jong Chul Lim;Hyo Sik Chang
    • Korean Journal of Materials Research
    • /
    • v.33 no.11
    • /
    • pp.475-481
    • /
    • 2023
  • Recently, the electron transport layer (ETL) has become one of the key components for high-performance perovskite solar cell (PSC). This study is motivated by the nonreproducible performance of ETL made of spin coated SnO2 applied to a PSC. We made a comparative study between tin oxide deposited by atomic layer deposition (ALD) or spin coating to be used as an ETL in N-I-P PSC. 15 nm-thick Tin oxide thin films were deposited by ALD using tetrakisdimethylanmiotin (TDMASn) and using reactant ozone at 120 ℃. PSC using ALD SnO2 as ETL showed a maximum efficiency of 18.97 %, and PSC using spin coated SnO2 showed a maximum efficiency of 18.46 %. This is because the short circuit current (Jsc) of PSC using the ALD SnO2 layer was 0.75 mA/cm2 higher than that of the spin coated SnO2. This result can be attributed to the fact that the electron transfer distance from the perovskite is constant due to the thickness uniformity of ALD SnO2. Therefore ALD SnO2 is a candidate as a ETL for use in PSC vacuum deposition.

Study on recombination zone of blue phosphorescent OLED (청색인광 OLED의 재결합 영역에 관한 연구)

  • Kim, Tae-Yong;Moon, Dae-Gyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.305-306
    • /
    • 2009
  • In this study, we have invastigated the recombination zone in the blue phosphorescent organic light-emitting devices with various partially doped structures. The basic device structure of the blue PHOLED was anode / hole injection layer (HIL) / hole transport layer (HTL) / emittingvastigated the recombination zone in the blue layer (EML) / hole blocking layer (HBL) / electron transport layer (ETL) / electron injection layer (EIL) / cathode. After the preparation of the blue PHOLED, the current density (J) - voltage (V) - luminance (L) and current efficiency characteristics were measured.

  • PDF

Electron Transport Properties of Zn(phen)q Compared with Alq3 in OLED

  • Kim, Byoung-Sang;Kim, Dong-Eun;Choi, Gyu-Chae;Park, Jun-Woo;Lee, Burm-Jong;Kwon, Young-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.418-422
    • /
    • 2009
  • We synthesized new electroluminescence materials [(1,10-phenanthroline)(8-hydroxyquinoline)] Zn(phen)q and investigated their electron transport properties. We used Zn(phen)q and $Alq_3$ for the conductive materials and measured their electron transport properties as a function of the organic layer thickness. The difference between Zn(phen)q and $Alq_3$ as electron transporting materials suggests that the electrical properties depends on the carrier injection.

A Comparison Study on Various Quantum Dots Light Emitting Diodes Using TiO2 Nanoparticles as Inorganic Electron Transport Layer (무기 전자 수송층으로 TiO2 나노입자를 사용한 다양한 양자점 전계발광 소자의 특성 비교 연구)

  • Kim, Moonbon;Yoon, Changgi;Kim, Jiwan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.3
    • /
    • pp.71-74
    • /
    • 2019
  • In this study, we fabricated two standard and inverted quantum dot light emitting diodes (QLEDs) using $TiO_2$ nanoparticles (NPs) with lower electron mobility than ZnO NPs as inorganic electron transport layer to suppress electron injection into the emitting layer. Current density was much higher for the inverted QLEDs than the standard ones. The inverted QLEDs were brighter, but showed low current efficiency due to the high current density. In addition, as the current density was higher, the driving voltage was higher, and the red shift was confirmed in the emission wavelength spectrum. The low current density in the standard structured devices showed that the possibility that $TiO_2$ NPs could suppress the electron injection in the QLEDs.