• Title/Summary/Keyword: Electron Heating

Search Result 384, Processing Time 0.031 seconds

Changes of Functional Properties of Garlic Extracts during Storage (마늘추출액의 저장 중 기능성성분 변화)

  • Byun, Pyung-Hwa;Kim, Woo-Jung;Yoon, Suk-Kwon
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.301-306
    • /
    • 2001
  • An invistigation was carried out to study the effects of heat treatment of garlic and storage temperature of garlic extracts on functional properties of garlic extracts. The garlic was heated at 40, 60, 80, 100, $120^{\circ}C$ for 10 minutes and extracted with 50% ethanol. The extracts were stored at 4, 25 and $50^{\circ}C$ for 30 days, and then electron donating ability(EDA), nitrite-scavenging effects(NSE) and total thiosulfinates contents were determined. Among the functional properties, total thiosulfinates were rapidly reduced as the heating and storage temperature increased. The total thiosulfinates in the extracts were not detected for those heat-treated at 100 and $120^{\circ}C$. The EDAs were also decreased to almost half of their initial level by heat treatment of garlic at higher temperature than $80^{\circ}C$ while NSE was decreased a little. As the storage temperature increased, EDA and thiosulfinate contents decreased. Particularly the thiosulfinates were ditected none after 11 days of storage at $25^{\circ}C$ and $50^{\circ}C$. Therefore, mild heat treatment of garlic at lower temperature than $60^{\circ}C$ and storage at refrigerated condition are recommendable for preparation and storage of garlic extracts.

  • PDF

Effect of Amylose Content on the Physical Properties of Resistant Starches (효소저항전분의 물리적 성질에 대한 아밀로오스 함량의 효과)

  • Mun, Sae-Hun;Baik, Moo-Yeol;Shin, Mal-Shick
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.516-521
    • /
    • 1997
  • Effect of amylose content on the physical properties of resistant starches (RS) from autoclaved maize starches (with starch:water=1:3.5, at $121^{\circ}C$) which were repeated up to 4 times heating-cooling cycles, were investigated by water uptake, scanning electron microscope (SEM) and differential scanning calorimetry (DSC). Amylose content of waxy maize starch (Amioca), common maize starch (PFP), high amylose starch(Amaizo, Amylomaize VII) were 0%, 29%, 50%, and 72%, respectively. Yield of RS increased as amylose content increased. Water uptake of all kinds of native starch was higher than that of RS, but lower than that of autoclaved starch. By SEM, RS showed some small particles on surface but the size of particles was different with amylose content. Single endothermic transition peak exhibited at $40{\sim}70^{\circ}C$ in autoclaved Amioca and PFP (crystalline melting of amylopectin) and at $132{\sim}169^{\circ}C$ in autoclaved Amaizo and Amylomaize VII(crystalline melting of amylose) by DSC. RS from all kinds of autoclaved starches except Amioca showed single endothermic peak over $155^{\circ}C$ but the enthalpy was not related to amylose content.

  • PDF

Understanding the Viscoelastic Properties and Surface Characterization of woodflour-Polypropylene Composites (목분-폴리프로필렌 복합재의 점탄성적 성질과 표면특성)

  • Son, Jungil;Gardner, Douglas J.
    • Journal of Adhesion and Interface
    • /
    • v.3 no.4
    • /
    • pp.1-9
    • /
    • 2002
  • The main goal of this study was to analyze the effect of process additives, i.e. maleated polypropylene (MAPP), and nucleating agent on the viscoelastic properties of different types of extruded polypropylene-wood plastic composites manufactured from either PP homopolymer, high crystallinity PP or PP impact copolymer using dynamic mechanical thermal analysis. And also, the esterification reaction between wood flour and maleated polypropylene, and its role in determining the mechanical properties of wood flour-polypropylene composites was investigated. The wood plastic composites were manufactured using 60% pine wood flour and 40% polypropylene on a Davis-Standard $Woodtruder^{TM}$. Dynamic mechanical thermal properties, polymer damping peaks(than ${\delta}$), storage modulus (E') and loss modulus (E") were measured using a dynamic mechanical thermal analyzer. XPS (X-ray Photoelectron Spectroscopy), also known as ESCA (Electron Spectroscopy for Chemical Analysis) study of wood flour treated with MAPP was performed to obtain information on the chemical nature of wood fiber before and after treatment. To analyze the effect of frequency on the dynamic mechanical properties of the various composites, DMA tests were performed over a temperature range of -20 to $100^{\circ}C$, at four different frequencies (1, 5, 10 and 25 Hz), and at a heating rate of $5^{\circ}C/min$. From these results, the activation energy of the various composite was measured using an Arrhenius relationship to investigate the effect of maleated PP and nucleating agent on the measurement of the interphase between the wood and plastic of the extruded polypropylene wood plastic composites.

  • PDF

Study on the Detoxification of Asbestos-Containing Wastes (ACW) Using SiC Plate (SiC 플레이트를 이용한 석면 함유 폐기물의 무해화 연구)

  • Hong, Myung Hwan;Choi, Hyeok Mok;Joo, So Young;Lee, Chan Gi;Yoon, Jin-Ho
    • Resources Recycling
    • /
    • v.29 no.1
    • /
    • pp.35-42
    • /
    • 2020
  • Even asbestos-containing waste (ACW) are highly harmful to humans, it continues being produced due to the massive disposal of asbestos-containing products. A development of asbestos detoxification and recycling technologies is required. Heat treatment using microwave is the most efficient method for ACW detoxification. However, microwave heat treatment method has the limitation that asbestos does not absorb microwave at room temperature. That is why, in this study, ACW was detoxified by microwave heat treatment adding the ACW between SiC plates, which are inorganic heating elements that absorb microwaves at room temperature. In order to improove the heat transfer, ACW was crushed and pulverized and then heated using microwave. Microwave heat treatment temperature and time variables were adjusted to investigate the detoxification properties according to heat treatment conditions. After heat treatment, treated ACW was analyzed for detoxification properties through crystal structure and microstructure analysis using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Microwave heat treatment method using SiC plate can be heated up to the target temperature within a short time. Finally, complete asbestos detoxification was confirmed from the crystal structure and the microstructure when the microwave heat treatment was performed at 1,200℃ for at over 60 minutes and at 1,300℃ for at over 10 minutes.

Development of Thermo-Cosmetics Using Photothermal Effect of Gold Nanoparticles (금 나노입자의 광열효과를 이용한 온열화장품 개발)

  • Lee, Jae-Yeul;Kim, Bo-Mi;Park, Se-Ho;Choi, Yo-Han;Shim, Kyu-Dong;Moon, Sung-Bae;Jang, Eue-Soon;Yang, Seun-Ah;Jhee, Kwang-Hwan
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.1
    • /
    • pp.27-34
    • /
    • 2015
  • Many applications of nanoparticles have been developed since 1970s. Surface plasmon resonance (SPR) effect can be generated at the surface of nanoparticles by illumination. SPR is the resonant oscillation of conduction electrons at the surface material stimulated by incident light. The collisions between excited electrons and metal atoms can cause the production of thermal energy (photothermal effect). Here, we presented the development of thermo-cosmetics using photothermal effect of gold nanoparticles. Gold nanoparticles (GNPs) were chosen for it's low toxicity. We also and investigated the cell biocompatibility and heating effectiveness for photothermal effect of GNPs. Synthesized GNPs were verified by UV-vis spectrophotometer, where GNP has a characteristic absorbance spectrum. Concentration of GNP was measured by atomic absorption analyzer. The cytotoxicity was confirmed by MTT assay and double staining assay. Photothermal effect of GNP was demonstrated by the thermal increasing properties depending on GNP concentration, which was taken by an IR-thermal camera with a xenon lamp as the light source. If the thermal effect of GNP is applied for thermo-cosmetics, it can supply heat to skin by converting solar energy into thermal energy. Thus, cosmetics containing GNPs can provide benefits to people in the cold region or winter season for maintaining skin temperature, which lead to a positive effect on skin health.

Discharge Standards of Kitchen-Disposer Wastewater by Treatment Types (디스포저(부엌용 오물분쇄기)-배수 전처리 방식 별 수질기준)

  • Chang, Ho Nam;Jeong, Chang Moon;Kang, Jong Won;Choi, Jin-dal-rae;Park, Young Sook;Ku, Ja-Kong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.2
    • /
    • pp.55-69
    • /
    • 2011
  • Use of disposer at the kitchens of Korean apartments is inevitable in treating their foodwaste having a water content of more than 80%. Also we have to ensure that this extra disposer-foodwaste BOD loadings be treated properly by installing/operating a pre-treatment system before this wastewater enters public sewer system. However, the degree of BOD removal should not be excessive since a BOD/N ratio higher than 5 is required for removing N/P at a municipal wastewater treatment plant. The removal of BOD/N in the pretreatment system rather than BOD alone can be an alternative solution in solving this problem. The particles separated by sedimentation, screen or packed-bed can be anaerobically digested at apartment sites to generate biogas that can be used for simple digester heating and to generate volatile fatty acids (VFAs) for nitrogen removal. We suggest that Korean government grants a temporary license (say for 5 years) to foodwaste treatment companies in collaboration with apartment construction companies which may do business and develop various kinds of disposer-foodwaste treatment systems in diverse wastewater discharge systems of Korean apartments.

Drying seaweeds using hybrid hot water Goodle dryer (HHGD): comparison with freeze-dryer in chemical composition and antioxidant activity

  • Nagahawatta, D.P.;Asanka Sanjeewa, K.K.;Jayawardena, Thilina U.;Kim, Hyun-Soo;Yang, Hye-Won;Jiang, Yunfei;Je, Jun-Geon;Lee, Tae-Ki;Jeon, You-Jin
    • Fisheries and Aquatic Sciences
    • /
    • v.24 no.1
    • /
    • pp.19-31
    • /
    • 2021
  • Seaweeds are a potential source of minerals, essential amino acids, fatty acids, proteins, and various bioactive compounds such as antioxidants. The higher water content of seaweeds reduces the shelf life and this requires the appropriate drying method. The drying conditions play a major role in the conservation of nutrient composition in dried seaweeds. In recent years, the seaweed industry has used many different drying methods with advantages and limitations. Hybrid hot-water Goodle dryer (HHGD) which is a special dryer mixed with hot-water and a Korean traditional heating system (Goodlejang) might be a solution to avoid these limitations. The present study evaluated the effect of drying conditions in HHGD on nutrient composition and bioactivities of brown seaweeds. Moreover, freeze-dryer (FD) and HHGD were employed in this study to compare the dried outputs obtained from four brown seaweed species. The present study aims to evaluate the effect of the hybrid hot-water Goodle drying method (HHGDM) on the nutritional composition and antioxidant activity of dried seaweeds. AOAC standard methods were used to analyze the proximate composition of dried samples and their 70% ethanol extract. The intracellular and extracellular antioxidant activities were evaluated using Vero cells and electron spin resonance (ESR) spectrometer respectively. High performance liquid chromatography, apoptotic body formation, and in-vivo experiments were used for further confirmation of the quality of dried output. The proximate composition results obtained from drying in HHGD and FD did not exhibit any significant difference. Moreover, the seaweed extracts from the dried seaweeds by HHGD and FD dryings were also not different and both significantly down-regulated in-vivo and in-vitro oxidative stress. Furthermore, the high performance liquid chromatography results revealed that the two dryers did not make the major peaks different in the chromatograms. Freeze-drying method (FDM) provides elevated quality for dried output, but there are limitations such as high cost and low capacity. The results from a novel HHGD did not provide any significant difference with the results in FD and expressed a potential to avoid the limitations in FD. Overall, these findings solidified the applicability of HHGD over FD.

Evaluation of Quality Characteristics of Broth Packets with Different Treatment of Dolsan Mustard Seeds (돌산갓 종자를 첨가한 국물용 육수팩의 품질특성)

  • Oh, SunKyung;Choi, MyeongRak
    • Journal of Life Science
    • /
    • v.32 no.9
    • /
    • pp.667-677
    • /
    • 2022
  • Dolsan mustard seeds (DMS) were added in whole, crushed, and roasted form at 0.5 g (S-1), 1.0 g (S-2), and 1.5 g (S-3), respectively to broth and heated for 10 or 15 min. After cooling, the quality characteristics were measured. Salinity and pH decreased with boiling time. The antioxidant activities of the experimental broth were measured in terms of total polyphenol content, total flavonoid content, electron donating ability (EDA), 2,2-azino-bis (3-ethyl-benzothizoline-6-sulfonic acid) (ABTS) radical scavenging activity, and ferric reducing antioxidant power (FRAP). The overall, antioxidant activity was higher in broths containing 1.0 g and 1.5 g DMS than in those containing 0.5 g DMS and the activity increased with increasing boiling time. Sinigrin was not detected in the control group, and no significant difference in sinigrin content was noted among broths containing different concentrations of DMS. A high glutamic acid content was detected in the control broth, whereas glutamic acid, aspartic acid, glycine, proline, alanine, and arginine were detected in the broths containing DMS. The free amino acid contents, particularly aspartic acid and glutamic acid contents, were high in umami. Volatile components, such as 2-propenyl-isothiocyanate (ITC), allylthiocyanate, n-butyl ITC, and 3-butenyl ITC, were detected in the DMS-containing broths. Sensory evaluation revealed that a higher amount of DMS added and a longer heating time increased the overall taste preference, and the difference was statistically significant. The purpose of this study was to present basic data on the quality characteristics of DMS-added broths to aid in the development of new products using DMS.

Synthesis, Characterization and Ammonia Decomposition Reaction Activity of Vanadium Oxynitride Obtained from the Reduction/Nitridation of Vanadium Oxide (바나디움 산화물의 환원 및 질화반응으로부터 얻어진 바나디움 산화질화물의 제조, 특성분석 및 암모니아 분해반응에서의 촉매 활성)

  • Yun, Kyung Hee;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.620-629
    • /
    • 2022
  • By varying various experimental conditions such as heating rate, molar hourly space velocity (MHSV), and nitridation reaction temperature, vanadium oxynitride was prepared through temperature programmed reduction/nitridation reaction (TPRN) of vanadium pentoxide and ammonia, and characterization were performed. In order to investigate the physico-chemical properties of the prepared catalyst, N2 adsorption-desorption analysis, X-ray diffraction analysis (XRD), hydrogen temperature programmed reduction (H2-TPR), temperature programmed oxidation (TPO), ammonia temperature programmed desorption (NH3-TPD), transmission electron microscopy (TEM) was performed. Transformation of V2O5 with 5 m2 g-1 low specific surface area by reduction at 340 ℃ to V2O3 showed a high specific surface area value of 115 m2 g-1 by micropore formation. As the nitridation temperature increased beyond that, the specific surface area continued to decrease due to sintering. The nitridation reaction variable that had the greatest influence on the specific surface area was the reaction temperature, and the x + y value of VNxOy of a single phase approached from 1.5 to 1.0 as the nitridation reaction temperature increased. At a high reaction temperature of 680 ℃, the cubic lattice constant a was VN. close to the value. At 680 ℃, the highest nitridation temperature among the experimental conditions, the ammonia conversion rate was 93%, and no deactivation was observed.

Improvement of lower hybrid current drive systems for high-power and long-pulse operation on EAST

  • M. Wang;L. Liu;L.M. Zhao;M.H. Li ;W.D. Ma;H.C. Hu ;Z.G. Wu;J.Q. Feng ;Y. Yang ;L. Zhu ;M. Chen ;T.A. Zhou;H. Jia;J. Zhang ;L. Cao ;L. Zhang ;R.R. Liang;B.J. Ding ;X.J. Zhang ;J.F. Shan;F.K. Liu ;A. Ekedahl ;M. Goniche ;J. Hillairet;L. Delpech
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4102-4110
    • /
    • 2022
  • Aiming at high-power and long-pulse operation up to 1000 s, some improvements have been made for both 2.45 GHz and 4.6 GHz lower hybrid (LH) systems during the recent 5 years. At first, the guard limiters of the LH antennas with graphite tiles were upgraded to tungsten, the most promising material for plasma facing components in nuclear fusion devices. These new guard limiters can operate at a peak power density of 12.9 MW/m2. Strong hot spots were usually observed on the old graphite limiters when 4.6 GHz system operated with power >2.0 MW [B. N. Wan et al., Nucl. Fusion 57 (2017) 102019], leading to a reduction of the maximum power capability. With the new limiters, 4.6 GHz LH system, the main current drive (CD) and electron heating tool for EAST, can be operated with power >2.5 MW routinely. Long-pulse operation up to 100 s with 4.6 GHz LH power of 2.4 MW was achieved in 2021 and the maximal temperature on the guard limiters measured by an infrared (IR) camera was about 540 ℃, much below the permissible value of tungsten material (~1200 ℃). A discharge with a duration of 1056 s was achieved and the 4.6 GHz LH energy injected into the plasma was up to 1.05 GJ. Secondly, the fully-active-multijunction (FAM) launcher of 2.45 GHz system was upgraded to a passive-active-multijunction (PAM), for which the density of optimum coupling was relatively low (below the cut-off value). Good coupling with reflection coefficient ~3% has been achieved with plasma-antenna distance up to 11 cm for the new PAM. Finally, in order to eliminate the effect of ion cyclotron range of frequencies (ICRF) wave on 4.6 GHz LH wave coupling, the location of the ICRF launcher was changed to a port that is located 157.5° toroidally from the 4.6 GHz LH system and is not magnetically connected.