• Title/Summary/Keyword: Electron Flow

Search Result 675, Processing Time 0.026 seconds

The Characteristics of Wear Resistance of Cu-TiB2 Composites Reinforced by TiB2 Powders (TiB2 분말로 강화된 Cu-TiB2 복합재료의 내마모특성)

  • Lee Tae-Woo;Choi Jong-Un;Kang Kae-Myung
    • Korean Journal of Materials Research
    • /
    • v.15 no.12
    • /
    • pp.824-828
    • /
    • 2005
  • In this study the effect of the content of $TiB_2$ on wear properties was investigated. $Cu-TiB_2$ composites have been fabricated by hot extrusion. Sliding wear tests were peformed by a pin-on-disk type wear test machine under dry condition and loads varied with from 20N to 80N at sliding speed 3.5Hz. The test results showed that the wear losses and the friction coefficients decreased with increasing $Cu-TiB_2$ volume fraction and increasing the size of $Cu-TiB_2$ particle. Wear property of $10{\mu}m,\;5 vol\%\; TiB_2$ specimen was excellent all of the wear specimens. It is thought that the increase of plastic flow resistivity due to uniform distribution of $10{\mu}m,\;5 vol\%\; TiB_2$ wear specimen would improve wear property. The worn surface and wear debris were examined by optical microscope and scanning electron microscope.

A Study on Thermal and Mechanical Properties of Elastic Epoxy with Water Aging (탄성형 에폭시의 흡습 열화에 따른 열적 및 기계적 특성에 관한 연구)

  • 이관우;민지영;한기만;최용성;박대희
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.6
    • /
    • pp.293-299
    • /
    • 2004
  • In this paper, thermal and mechanical properties of electric epoxy with water aging were discussed. We made elastic epoxy specimen adding a ratio of 0〔phr〕20〔phr〕, 35〔phr〕 and 53〔phr〕 with modifier to existing epoxy. We studied mechanical property of elastic resin after absorption in water from 0 to 484 hours. As a result, diffusion factor of elastic epoxy showed 20-21${\times}$10$^{-4}$ $\textrm{mm}^2$/s and general epoxy showed 9.5${\times}$10$^{-4}$ $\textrm{mm}^2$/s. Elastic property increased linearly according to addiction and decreased according to water absorption. Tensile strength was reduced according to addition. It was affected by water absorption of micro-void of elastic epoxy. Hardness inclined to decrease after increasing according to absorbed time. In water-absorption state, it was experimented a change of heat flow by temperature of elastic epoxy and change of thermal expansion coefficient. DSC (Differential Scanning Calorimetry) and TMA (Thermomechanical Analysis) equipments were used to measure Tg. A temperature ringe of DSC was from -0($^{\circ}C$) to 200($^{\circ}C$). One of TMA was from -0($^{\circ}C$) to 350($^{\circ}C$). In addition, we investigated structural analysis of water absorbed specimen using SEM (Scanning Electron Microscope).

Characterization of Helicon Plasma by H$_2$ Gas Discharge and Fabrication of Diamond Tinn Films

  • Hyun, June-Won;Kim, Yong-Jin;Noh, Seung-Jeong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.2
    • /
    • pp.12-17
    • /
    • 2000
  • Helicon waves were excited by a Nagoya type III antenna in magnetized plasma, and hydrogen and methane are fed through a Mass Flow Controller(MFC). We made a diagnosis of properties of helicon plasma by H$_2$gaseous discharge, and fabricated the diamond thin film. The maximum measured electron density was 1${\times}$10$\^$10/ cm$\^$-3/. Diamond films have been growo on (100) silicon substrate using the helicon plasma chemical vapor deposition. Diamond films were deposited at a pressure of 0.1 Torr, deposition time of 40~80 h, a substrate temperature of 700$^{\circ}C$ and methane concentrations of 0.5~2.5%. The growth characteristics were investigated by means of X-ray Photoelectron (XPS) and X-ray Diffraction(XRD), XRD and XPS analysis revealed that SiC was formed, and finally diamond particles were definitely deposited on it. With increasing deposition time, the thickness and crystallization of the daimond thin film increased, For this system the optimum condition of methane concentration was estimated to near to 1.5%.

  • PDF

V2O5-P2O5-ZnO-Sb2O3 Glass Frit Materials with BaO and Al2O3 for Large-sized Dye-sensitized Solar Cell Sealing

  • Lee, Han Sol;Cho, Jae Kwon;Hwang, Jae Kwon;Chung, Woon Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.2
    • /
    • pp.114-118
    • /
    • 2015
  • $V_2O_5-P_2O_5-ZnO-Sb_2O_3$ glasses modified with BaO and $Al_2O_3$ are synthesized as a sealing material for large-scale dye-sensitized solar cells (DSSCs). A compositional study is performed in order to determine the glass that can be sintered below $500^{\circ}C$ with a high chemical stability against the electrolyte. The flow size of the glasses after the heat treatment and the glass stability are increased with the addition of $Al_2O_3$ and BaO, while the glass transition temperature is decreased. After the reaction with the electrolyte at $60^{\circ}C$ for 72 h, the addition of 5 mol% of BaO and 2 mol% of $Al_2O_3$ considerably enhances the chemical stability of the glass. X-ray diffraction (XRD) and scanning electron microscope (SEM) are used to examine the reaction between the electrolyte and glasses. The structural contribution of the additives is also investigated and discussed.

Study for the fabrication of electrodes and photoconductive properties of a single ZnO nanowire (단일 ZnO 나노선의 전극 형성 및 광전도 특성 연구)

  • Keem, Ki-Hyun;Jeong, Dong-Young;Kim, Kyung-Hwan;Kang, Jeong-Min;Yoon, Chang-Joon;Min, Byung-Don;Kim, Sang-Sig
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.33-34
    • /
    • 2005
  • Electrodes were fabricated on a single ZnO nanowire by photolithography process, metal evaporation, and lift-off. The slow photoresponses of the ZnO nanowire under the continuous illumination of 325nm-wavelength light (corresponding to above-bandgap excitation) indicate that the traps related to oxygen vacancy disturb the flow of electron in ZnO nanowire. The photoresponse and PL spectra were measured, and observed that the excitonic band in the PL spectrum was absent in the photoresponse.

  • PDF

Influence of Dynamic Strain Aging on Tensile Deformation Behavior of Alloy 617

  • Ekaputra, I.M.W.;Kim, Woo-Gon;Park, Jae-Young;Kim, Seon-Jin;Kim, Eung-Seon
    • Nuclear Engineering and Technology
    • /
    • v.48 no.6
    • /
    • pp.1387-1395
    • /
    • 2016
  • To investigate the dynamic strain aging (DSA) behavior of Alloy 617, high-temperature tensile tests were carried out with strain rates variations of $10^{-3}/s$, $10^{-4}/s$, and $10^{-5}/s$ from $24^{\circ}C$ to $950^{\circ}C$. Five flow relationships, Hollomon, Ludwik, Swift, Ludwigson, and Voce, were applied to describe the tensile true stress-strain curves, and the DSA region was defined. In describing the tensile curves, Ludwigson's equation was superior to the other equations, and the DSA region was adequately defined by this equation as plateaus at intermediate temperatures from $200^{\circ}C$ to $700^{\circ}C$. It was identified that Alloy 617 is dominated by three types of serrations, known as Types D, A+B, and C. The activation energy values for each serration type were obtained by the Arrhenius equation. By using the obtained activation energy values, the serrated yielding map and the DSA mechanism were drawn and manifested. In addition, the relationship between the tensile strength and strain rate at higher temperatures above $700^{\circ}C$ was found to be closely related to the amounts of slip lines. In the scanning electron microscope (SEM) fractographs, there was a significant difference at the low, intermediate, and high temperatures, but almost the same to the three strain rates.

Growth and Characterization of Vertically well Aligned Crbon Nanotubes on Glass Substrate by Plasma Enhanced Hot Filament Chemical Vapor deposition

  • Park, Chong-Yun;Yoo, Ji-Beom
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.210-210
    • /
    • 2000
  • Vertically well aligned multi-wall carbon nanotubes (CNT) were grown on nickel coated glass substrates by plasma enhanced hot filament chemical vapor deposition at low temperatures below 600$^{\circ}C$. Acetylene and ammonia gas were used as the carbon source and a catalyst. Effects of growth parameters such as pre-treatment of substrate, plasma intensity, filament current, imput gas flow rate, gas composition, substrate temperature and different substrates on the growth characteristics of CNT were systematically investigated. Figure 1 shows SEM image of CNT grown on Ni coated glass substrate. Diameter of nanotube was 30 to 100nm depending on the growth condition. The diameter of CNT decreased and density of CNT increased as NH3 etching time etching time increased. Plasma intensity was found to be the most critical parameter to determine the growth of CNT. CNT was not grown at the plasma intensity lower than 500V. Growth of CNT without filament current was observed. Raman spectroscopy showed the C-C tangential stretching mode at 1592 cm1 as well as D line at 1366 cm-1. From the microanalysis using HRTEM, nickel cap was observed on the top of the grown CNT and very thin carbon amorphous layer of 5nm was found on the nickel cap. Current-voltage characteristics using STM showed about 34nA of current at the applied voltage of 1 volt. Electron emission from the vertically well aligned CNT was obtained using phosphor anode with onset electric field of 1.5C/um.

  • PDF

DC Reactive Magnetron Co-Sputtering 방법을 이용한 Cu-TiN Composite 박막 증착

  • Jang, Jin-Hyeok;Kim, Gyeong-Hun;Kim, Seong-Min;Han, Seung-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.195.1-195.1
    • /
    • 2013
  • Cu는 금속 박막재료로서 높은 전기전도성을 지니고 있을 뿐만 아니라 Ag, Al, Pt 등 보다 비용이 저렴하여, 높은 전기전도성을 필요로 하는 박막 재료로써 폭넓게 사용되고 있다. 그러나, 낮은 기계적 특성을 지니고 있어서 interconnect와 같은 작은 단면적의 배선재료로 사용될 경우, 높은 전류밀도에 따른 electromigration 현상에 의하여 hillock 또는 void의 형성 등 박막재료의 변형이 생기게 되어서 전자소자의 수명이 단축된다는 단점이 있다. TiN은 금속재료 못지않은 높은 전기 전도성을 지니고 있을 뿐만 아니라, 금속재료에 비하여 높은 기계적 특성과 녹는점을 지니고 있어 다양한 분야로 사용되고 있다. 본 연구에서는 Cu와 TiN composite 박막을 soda-lime glass위에 증착하여 낮은 비저항 뿐만 아니라 Cu와 비교하여 기계적 특성이 향상된 박막을 제작하고자 하였다. Cu와 TiN composite 박막 증착을 위하여 DC reactive magnetron co-sputtering 장비를 사용하였으며, Cu와 Ti 타겟 power, Ar:N2 유량비(Flow rate)을 변화시켜 Cu와 Ti의 조성비 및 TiN의 결정성을 조절하였고, 이를 통하여 박막의 TiN 조성에 따른 낮은 비저항 값과 순수한 Cu 박막과 비교하여 높은 기계적 특성을 지닌 Cu-TiN 박막을 증착하였다. Cu-TiN composite 박막의 구조 및 조성은 SEM (Scanning Electron Microscope), EDS (Energy Dispersive Spectrometer), XPS (X-ray Photoelectron Spectroscopy)장비를 사용하여 분석하였으며, 전기전도도는 4-point probe를 사용하여 측정하였고, Knoop hardness 측정방법을 사용하여 박막의 기계적 특성을 측정하였다.

  • PDF

Support Effect of Catalytic Activity on 3-dimensional Au/Metal Oxide Nanocatalysts Synthesized by Arc Plasma Deposition

  • Jung, Chan Ho;Naik, B.;Kim, Sang Hoon;Park, Jeong Y.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.140.2-140.2
    • /
    • 2013
  • Strong metal-support interaction effect is an important issue in determining the catalytic activity for heterogeneous catalysis. In this work, we report the catalytic activity of $Au/TiO_2$, $Au/Al_2O_3$, and $Au/Al_2O_3-CeO_2$ nanocatalysts under CO oxidation fabricated by arc plasma deposition (APD), which is a facile dry process with no organic materials involved. These catalytic materials were characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS) and $N_2$-physisorption. Catalytic activity of the materials has measured by CO oxidation using oxygen, as a model reaction, in a micro-flow reactor at atmospheric pressure. Using APD, the catalyst nanoparticles were well dispersed on metal oxide powder with an average particle size (3~10 nm). As for catalytic reactivity, the result shows $Au/Al_2O_3-CeO_2$ nanocatalyst has the highest catalytic activity among three samples in CO oxidation, and $Au/TiO_2$, and $Au/Al_2O_3$ in sequence. We discuss the effects of structure and metal-oxide interactions of the catalysts on catalytic activity.

  • PDF

Effective Control of CH4/H2 Plasma Condition to Synthesize Graphene Nano-walls with Controlled Morphology and Structural Quality

  • Park, Hyun Jae;Shin, Jin-ha;Lee, Kang-il;Choi, Yong Sup;Song, Young Il;Suh, Su Jeong;Jung, Yong Ho
    • Applied Science and Convergence Technology
    • /
    • v.26 no.6
    • /
    • pp.179-183
    • /
    • 2017
  • The direct growth method is simplified manufacturing process used to avoid damages and contaminants from the graphene transfer process. In this paper, graphene nano-walls (GNWs) were direct synthesized using electron cyclotron resonance (ECR) plasma by varying the $CH_4/H_2$ gas flow rate on the copper foil at low temperature (without substrate heater). Investigations were carried out of the changes in the morphology and characteristic of GNWs due to the relative intensity of hydrocarbon radical and molecule in the ECR plasma. The results of these investigations were then discussed.