• Title/Summary/Keyword: Electron Configuration

Search Result 165, Processing Time 0.036 seconds

Stereoselective Electron Transfer and Ionic Association between Λ$-[Co(EDDS)]^-and [Co(en)_3]^{2+}$ (광학활성인 Λ$-[Co(EDDS)]^-$$[Co(en)_3]^{2+}$간의 입체선택적 전자전달 및 이온회합)

  • Lee, Dong Jin;O, Chang Eon;Do, Myeong Gi
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.159-164
    • /
    • 1990
  • Absolute configuration of optically active [Co(EDDS)]- (EDDS = ethylenediaminedisuccinate) complex was determined as Λ-form by octant rule and spectroscopic data, and the stereoselective ionic association of Λ-[Co(EDDS)]- and racemic-$[Co(en)^3]_{3+}$ occurs preferrentially between Λ$-[Co(EDDS)]-$ and Δ$-[Co(en)3]3+$. The stereoselective electron-transfer reaction between Λ-[Co(EDDS)]- and racemic-$[Co(en)_3]^{2+}$ has produced 14% e.e (e.e = enantiomeric excess) of Δ$[Co(en)_3]^{3+}$ through the stereoselective ion pairing.

  • PDF

Comparison of stabilities in carbon nanotubes grown on a submicron-sized tip in terms of various buffer and catalyst materials (미세크기 팁 위에 성장된 탄소 나노튜브의 완충막 및 촉매 금속에 따른 안정성 비교)

  • Kim, Jong-Pil;Kim, Young-Kwang;Park, Chang-Kyun;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1224-1225
    • /
    • 2008
  • The results of the experiment that was conducted on the electron emission property and the long-term stability of the emission current in various carbon nanotubes (CNTs)-based field emitters with a CNT/catalyst/buffer/W-tip configuration are presented herein. CNT-based field emitters were fabricated by varying the (TiN, Al/Ni/TiN) buffer layer and the (Ni, Co) catalyst material. This study aimed to elucidate how the buffer layers and catalyst materials affect the structural properties of CNTs and the long-term stability of CNT emitters. Raman spectroscopy, field emission SEM, and high-resolution TEM were used to analyze the crystalline structure, surface morphologies, and nanostructures of all the grown CNTs. X-ray photoelectron spectroscopy (XPS) was used to monitor the chemical bonds of all the buffer layers and catalysts. Electron emission measurement and a long-term (up to 40h) stability test were carried out using a compactly designed field emission measurement system.

  • PDF

Ultrastructure of the flagellar apparatus in cryptomorphic Cryptomonas curvata (Cryptophyceae) with an emphasis on taxonomic and phylogenetic implications

  • Nam, Seung Won;Shin, Woongghi
    • ALGAE
    • /
    • v.31 no.2
    • /
    • pp.117-128
    • /
    • 2016
  • Cryptomonas curvata Ehrenberg is a photosynthetic freshwater flagellate and the type species of the genus Cryptomonas. We examined the flagellar apparatus of cryptomorphic C. curvata by transmission electron microscopy. The major components of the flagellar apparatus are the non-keeled rhizostyle (Rhs), striated fibrous root (SR), striated fiber-associated microtubular root (SRm), mitochondrion-associated lamella (ML), and two types of microtubular roots (3r and 2r). The non-keeled Rhs originate at the ventral basal body and consist of two types of microtubule bands extending together into the middle of the cell. The SR and SRm extend parallel to the left side of the cell. The ML originates from the ventral basal body and is a plate-like fibrous structure associated with mitochondria. The 3r extends from the dorsal basal body toward the dorsal anterior of the cell. The 2r originates between the two basal bodies and extends shortly to the left of the cell. The overall configuration of the flagellar apparatus is most similar to that previously reported for C. pyrenoidifera. These results demonstrate that the features of the flagellar apparatus are useful for distinguishing closely related species and inferring phylogenetic relationships among taxa.

A study on the characteristics of axially magnetized capacitively coupled radio frequency plasma (축 방향 자장이 인가된 용량 결합형 라디오 주파수 플라즈마의 특성 연구)

  • Lee, Ho-Jun;Yi, Dong-Yung;Tae, Heung-Sik;Whang, Ki-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.1066-1068
    • /
    • 1999
  • Magnetic field is commonly used in low temperature processing plasmas in order to obtain high density. E $\times$ B magnetron or surface multipole configuration were most popular. However, the properties of capacitively coupled rf plasma confined by axially applied static magnetic fields have rarely been studied. In this paper, the effects of magnetic field on the characteristics of 13.56MHz/40KHz argon plasma will be reported. Ion saturation current, electron temperature and plasma potential were measured by Langmuir probe and omissive probe. At low pressure region ($\sim$10mTorr), ion current was increased by a factor of 3 - 4 due to reduction of diffusion loss of charged particles to the wall. It was observed that magnetic field induces large time variation of the plasma potential. The experimental result was compared with particle-in-cell simulation. It was also observed that electron temperature tend to decrease with increasing magnetic induction level for 40KHz discharge.

  • PDF

Characterization of Planar Defects in Annealed SiGe/Si Heterostructure

  • Lim, Young-Soo;Seo, Won-Seon
    • Korean Journal of Materials Research
    • /
    • v.19 no.12
    • /
    • pp.699-702
    • /
    • 2009
  • Due to the importance of the SiGe/Si heterostructure in the fields of thermoelectric and electronic applications, SiGe/Si heterostructures have been extensively investigated. For practical applications, thermal stability of the heterostructure during the thermoelectric power generation or fabrication process of electronic devices is of great concern. In this work, we focused on the effect of thermal annealing on the defect configuration in the SiGe/Si heterostructure. The formation mechanism of planar defects in an annealed SiGe/Si heterostructure was investigated by transmission electron microscopy. Due to the interdiffusion of Si and Ge, interface migration phenomena were observed in annealed heterostructures. Because of the strain gradient in the migrated region between the original interface and the migrated interface, the glide of misfit dislocation was observed in the region and planar defects were produced by the interaction of the gliding misfit dislocations. The planar defects were confined to the migrated region, and dislocation pileup by strain gradient was the origin of the confinement of the planar defect.

Effects of electrode configurations on uniformity of copper films on flexible polymer substrate prepared by ECR-MOCVD (ECR-MOCVD에 의해 연성 고분자 기판에 제조된 구리막의 균일도에 전극의 형태가 미치는 영향)

  • 전법주;이중기
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.34-46
    • /
    • 2004
  • Copper films were prepared by using ECR-MOCVD(Electron Cyclotron Resonance Metal Organic Chemical Vapor Deposition) coupled with a DC bias system. The DC bias is connected to the electrode which placed 1∼3cm above the polymer substrate. The pulse electrical field around the electrode attracts the positive charged copper ions generated from the dissociation of copper precursor, $Cu(hfac)_2$, under ECR plasma. Condensation of supersaturated copper ions in the space between the electrode and substrate, makes it possible to deposit copper film on the polymer substrate even at room temperature. In this study, optimization of the electrode configuration was carried out in order to obtain the uniform films. The uniformity of the deposited films were closely related to the parameters of electrode geometry such as electrode shape, thickness, grid size and the spacing between electrodes. The most uniform copper film was observed with the electrode that enabled uniform electrical field distribution across the whole dimension of electrode.

Effects of the gold nanoparticles including different thiol functional groups on the performances of glucose-oxidase-based glucose sensing devices

  • Christwardana, Marcelinus;Chung, Yongjin;Tannia, Daniel Chris;Kwon, Yongchai
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2421-2429
    • /
    • 2018
  • Thiol-based self-assembled anchor linked to glucose oxidase (GOx) and gold nanoparticle (GNP) cluster is suggested to enhance the performance of glucose biosensor. By the adoption of thiol-based anchors, the activity of biocatalyst consisting of GOx, GNP, polyethyleneimine (PEI) and carbon nanotube (CNT) is improved because they play a crucial role in preventing the leaching out of GOx. They also promote electron collection and transfer, and this is due to a strong hydrophobic interaction between the active site of GOx and the aromatic ring of anchor, while the effect is optimized with the use of thiophenol anchor due to its simple configuration. Based on that, it is quantified that by the adoption of thiophenol as anchor, the current density of flavin adenine dinucleotide (FAD) redox reaction increases about 42%, electron transfer rate constant ($k_s$) is $9.1{\pm}0.1s^{-1}$ and the value is 26% higher than that of catalyst that does not use the anchor structure.

A study on the characteristics of axially magnetized capacitively coupled radio frequency plasma (축 방향으로 자화된 용량 결합형 RF 플라즈마의 특성 연구)

  • 이호준;태흥식;이정해;신경섭;황기웅
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.1
    • /
    • pp.112-118
    • /
    • 2001
  • Magnetic field is commonly used in low temperature processing plasmas to enhance the performance of the plasma reactors. E$\times$B magnetron or surface multipole configuration is the most popular. However, the properties of capacitively coupled rf plasma confined by axial static magnetic field have rarely been studied. With these background, the effect of magnetic field on the characteristics of capacitively coupled 13.56 MHz/40 KHz argon plasma was studied, Ion saturation current, electron temperature and plasma potential were measured by Langmuir probe and emissive probe. At low pressure region (~10 mTorr), ion current increases by a factor of 3-4 due to reduction of diffusion loss of charged particles to the wall. Electron temperature slightly increases with magnetic field for 13.56 MHz discharge. However, for 40 KHz discharge, electron temperature decreased from 1.8 eV to 0.8 eV with magnetic field. It was observed that the magnetic field induces large temporal variation of the plasma potential. Particle in cell simulation was performed to examine the behaviors of the space potential. Experimental and simulation results agreed qualitatively.

  • PDF

A Study of Polarity Effect of Parallel Plate Type ionization Chamber with Different Volume (평행평판형 전리함의 두 전극간의 거리에 따른 극성효과 연구)

  • 윤형근;신교철
    • Progress in Medical Physics
    • /
    • v.13 no.2
    • /
    • pp.69-73
    • /
    • 2002
  • Exposure measurement data with parallel plate ionization chambers were known to depend on the polarity ($k_{pol}$) effect. In this work, the polarity effect were investigated for three parallel plate ionization chambers with different volume. The ionization chamber was fabricated using acrylic plate for the chamber medium and printed circuit board for electrical configuration. The various sizes of the sensitive volumes designed so far were 0.9, 1.9, and 3.1 co. High voltage generator was fabricated using the conventional 9 V batteries to apply the high voltage (300-500 V) to the electrode of the parallel plate ionization chamber. The gap between two electrodes ranged from 3, 6, and 10mm. As the result of our experiment, the polarity effect was within 0.5% in photon beam and 1% to 3.5% in the electron beams. Among electron beams, 16 MeV beam, which had highest energy, showed less polarity effect than electron beams with other energies.

  • PDF

Characterization of Basal Plane Dislocations in PVT-Grown SiC by Transmission Electron Microscopy

  • Jeong, Myoungho;Kim, Dong-Yeob;Hong, Soon-Ku;Lee, Jeong Yong;Yeo, Im Gyu;Eun, Tai-Hee;Chun, Myoung-Chuel
    • Korean Journal of Materials Research
    • /
    • v.26 no.11
    • /
    • pp.656-661
    • /
    • 2016
  • 4H- and 6H-SiC grown by physical vapor transport method were investigated by transmission electron microscopy (TEM). From the TEM diffraction patterns observed along the [11-20] zone axis, 4H- and 6H-SiC were identified due to their additional diffraction spots, indicating atomic stacking sequences. However, identification was not possible in the [10-10] zone axis due to the absence of additional diffraction spots. Basal plane dislocations (BPDs) were investigated in the TEM specimen prepared along the [10-10] zone axis using the two-beam technique. BPDs were two Shockley partial dislocations with a stacking fault (SF) between them. Shockley partial BPDs arrayed along the [0001] growth direction were observed in the investigated 4H-SiC. This arrayed configuration of Shockley partial BPDs cannot be recognized from the plan view TEM with the [0001] zone axis. The evaluated distances between the two Shockley partial dislocations for the investigated samples were similar to the equilibrium distance, with values of several hundreds of nanometers or even values as large as over a few micrometers.