• Title/Summary/Keyword: Electron Affinity

Search Result 147, Processing Time 0.022 seconds

Total Photoyields from CVD Diamond Surfaces and Their Electron Affinity

  • T.Ito;H.Yagi;N.Eimori;A.Hatta;A.Hiraki
    • The Korean Journal of Ceramics
    • /
    • v.3 no.1
    • /
    • pp.21-23
    • /
    • 1997
  • Dependences of total photoyields on incident photon energies were measured using synchrotron radiation light for different chemical-vapor-deposited diamond with differently treated surface. Results show that a considerable amount of gap states are presented for as-grown specimens with H-terminated, that negative electron affinity (NEA) is realized for H-plasma-treated specimens, and that sufficient O-treatment to NEA specimens results in positive electron affinity. The observed electron affinity can be explained in terms of differences in strength of the surface dipole layer formed by difference in the electron negativity among C, H and O atoms.

  • PDF

Electron Emitter of Negative Electron Affinity Diamond

  • Hiraki, Akio;Ogawa, Kenji;Eimori, Nobuhiro;Hatta, Akimitsu
    • The Korean Journal of Ceramics
    • /
    • v.2 no.4
    • /
    • pp.193-196
    • /
    • 1996
  • A new type of electron emitter device of chemical-vapor-deposited diamond thin film is proposed. The device is a diode of metal-insulator-insulator-semiconductor (MIS) structure consisting of an intrinsic polycrystalline diamond film as the insulator, an aluminium electrode on one side, and hydrogenated diamond surface on the other side as the p-type semconductor with negative electron affinity (NEA). Electrons will be injected and/or excited to the conduction band of intrinsic diamond layer to be emitted from the hydrogenated diamond surface of NEA.

  • PDF

Bioelectrocatalyzed Signal Amplification for Affinity Interactions at Chemically Modified Electrodes

  • Hyun C. Yoon;Kim, Hak-Sung
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.2
    • /
    • pp.107-111
    • /
    • 2004
  • A comparative study was performed to evaluate the signal amplification strategies in electrochemical affinity sensing, which included the direct electron transfer and diffusible-group mediated electron transfer between label enzymes that were specifically bound to target proteins and chemically modified electrode surfaces. As a platform surface for affinity recognition reactions, a double functionalized poly(amidoamine) dendrimer monolayer that was modified with ferrocene and biotin groups was constructed on a gold surface. With the chemically modified electrode, a model affinity sensing with avidin was investigated. The advantages of adopting the diffusible-group mediated signaling strategy were demonstrated in terms of signal sensitivity and stability.

Photoelectrochemical Conversion of $SnO_2$ Films Deosited by Spray Pyrolysis (분무 열분해법에 의해 증착된 $SnO_2$ 박막의 광전기 화학 변환 특성)

  • 김태희;박경봉;윤기현
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.3
    • /
    • pp.197-204
    • /
    • 1991
  • The photoelectrochemical conversion in SnO2 films deposited by spray pyrolysis using SnCl4-alcohol solution and N2 gas has been studied. The photocurrent increases with increasing deposition temperature up to 40$0^{\circ}C$ and then decreases, and the electron affinity decreases as the deposition temperature increases to 40$0^{\circ}C$. As the concentration of the spray solution increases, the photocurrent reaches a maximum value at the concentration of 0.05M, and the electron affinity is consistent. As the thickness of the film increases, the photocurrent increases with a maximum value at the thickness of 4600$\AA$, and electron affinity does not change.

  • PDF

Synthesis and Electron Transport of Novel Stilbenequinone(II) (Stilbenequinone의 합성과 전자 수송(II))

  • Cho, Chong-Rae;Kim, Myoung-Hwan;Yang, Jong-Heon;Kim, Beom-Jun;Chung, Su-Tae;Son, Se-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1002-1005
    • /
    • 2002
  • We have synthesized novel stilbenequinone derivatives(ASQ, PSQ) and investigated the properties of their electron drift mobility. Characteristics of the ionization potential Ip and electron affinity Ea of the ASQ were investigated by determining both oxidation and reduction potentials. There were estimated Ip = 7.1 eV and Ea = 3.6 eV. The electron drift mobility of ASQ mixture(R:t-Bu 10wt%) was $1.5{\times}10^{-5}cm^2/V{\cdot}sec$ at $6.15{\times}10^{5}V/cm$ and $1.3{\mu}m$ thickness.

  • PDF

Properties of Electrical and Optical for OLED using Zn(HPB)q as Electron Transporting Layer (Zn(HPB)q를 전자수송층으로 이용한 OLED의 전기.광학적 특성 연구)

  • Kim, Dong-Eun;Park, Jun-Woo;Kim, Byoung-Sang;Lee, Burm-Jong;Kwon, Young-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.927-931
    • /
    • 2010
  • Recently, high luminance and high efficiency were realized in OLED with multilayer structure including emitting materials such as metal-chelate complexes. We synthesized a new luminescent material, namely, [2-(2-hydroxyphenyl)quinoline] (Zn(HPB)q) which has low molecular compound and emitted in yellowish green region. The ionization potential(IP) and electron affinity(EA) of Zn(HPB)q were measured by cyclic-voltammetry(CV). As a result, IP and EA of Zn(HPB)q were calculated 6.8 eV and 3.5 eV, respectively. We fabricated the devices and observed the possibility of Zn(HPB)q as electron transporting layer. We have obtained an improvement of luminance and decrease of turn-on voltage using Zn(HPB)q as electron transporting layer.

Study on The lonzation Potential, Electron Affinity and Electrochemical Property of PBO and PVK using Cyclic Voltammetry and Constant Current Potentiometry (순환전압전류법과 일정전류전위차법을 이용한 PBD와 PVK의 이온화에너지, 전자친화도 및 전기화학적 특성에 관한 연구)

  • 형경우;최돈수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12S
    • /
    • pp.1273-1277
    • /
    • 2003
  • The effects of molecular structure on the redox properties are explored by the cyclic voltammetry, constant current potentiometry and spectroscopy using the thin films of organic electroluminescence materials of Poly(N-vinylcarbazole); PVK and 2- (4'-tert-butylphenyl) -5-(4"-bisphenyl) -1,3,4-oxadiazole; PBD. The UV/visible absorption maxima and band gap (E$\_$g/) show at 310nm (4.00eV) and 368nm (3.37eV) for FBD, 344nm (3.60eV) and 356nm (3.48eV) for PVK, respectively. The measured electrochemical ionization potential (IP) and electron affinity (EA) of these materials we 5.87 and 2.82eV for PBD, 5.80 and 3.17eV for PVK, respectively. The electrical band gaps are 3.05eV for PBD and 2.78eV for PVK, respectively. The electrical hole gap and electron gap with respect to the first rising potentials and the inflection potentials are obtained to be 0.39V and 0.41V for PBD, 0.25V and 0.28V for FVK, respectively.

Improvement of the resistance to Treeing by additive in Low Density Polyethylene (첨가재에 의한 저밀도 폴리에틸렌의 내트리잉성 향상)

  • 김봉협;임기조
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.1
    • /
    • pp.17-25
    • /
    • 1986
  • Discussions on this paper are related to the effects of organic materials to treeing phenomena of low density polyethylene. As additives, 11 kinds of organic compounds are selected by considering the respective features such as melting point, boiling point, electron affinity as well as molecular structure, and then the specimens of low density polyethylene are prepared by blending with 10wt% of the selected additives. For the comparison of effectiveness of treeing resistance and interpretation of the mechanism of compounds as treeing retardants, several investigations such as the tree acceleration test, the prestressed test and the measurement of internally occurred partial discharge are carried out. As the results, meta-Cresol is regard as the most effective retardant among those, and it is supposed that this aromatic compound to be comprised of radical having large electron affinity has strong capability to accept energetic electron to prevent or delay the growth of discharge streamer. Furthermore, by activating partial discharge at the wall of tree pit through the function of trapped electron at this material, the gas pressure in the pit is increased up to prevent the growth of streamer.

  • PDF

DFT Calculation on the Electron Affinity of Polychlorinated Dibenzo-p-dioxins

  • Lee, Jung-Eun;Choi, Won-Yong;Mhin, Byung-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.792-796
    • /
    • 2003
  • Polychlorinated dibenzo-p-dioxins (PCDDs) are extremely toxic and persistent environmental pollutants. Their chemical reactivities and other physicochemical/biological properties show a strong dependence on the chlorination pattern. With increasing the number of chlorines, dioxin congeners become more electronegative and gain higher electron affinities. The vertical electron affinities (VEA) are related with the LUMO energies of neutral molecules. LUMO energies of all PCDD congeners were calculated at the B3LYP/6-31G** level and those of some selected congeners at the level of B3LYP/6-311G**//B3LYP/6-31G** and B3LYP/cc-pvtz/ /B3LYP/6-31G**. The total energies of neutral and anionic species for dibenzo-p-dioxins (DD), 1469-TCDD, 2378-TCDD, and OCDD were calculated at the level of B3LYP/6-31G**, B3LYP/aug-cc-pvdz, and B3LYP/ aug-cc-pvtz//B3LYP/6-31G**. By using the four congeners with D2h symmetry as reference molecules, we could estimate VEA (B3LYP/aug-cc-pvdz) of 75 PCDD congeners based on the linear correlations between LUMO energy and VEA (B3LYP/6-31G**) and between VEA (B3LYP/6-31G**) and VEA (B3LYP/aug-ccpvtz// B3LYP/6-31G**). Results show that all PCDDs with the number of Cl ≥ 3 have positive electron affinities. The PCDD electron affinity values provided in this work can be a useful data set in understanding the congener-specific reactivities of dioxins in various environmental media.

Cyclovoltametric Methods for the Ionization Potential and Electron Affinity of Iridium ppy Derivatives

  • Shin, Dong-Myung;Sohn, Byoung-Chung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.125-129
    • /
    • 2003
  • The effects of molecular structure on the redox properties of the organic electroluminescent materials (Ir$(ppy)_3$ Ir$(m-ppy)_3$ Ir$(p-toly)_3$) were studied using cyclic voltammetry and spectroscopy. These iridium complexes show reversible oxidation and reduction on the electrode, which produce the symmetric cyclic voltammogram. It indicates that these materials are very stable under repetitive oxidation/reduction cycles. The electrochemically determined ionization potentia/electron affinity values are 5.4OeV/3.02eV for Ir$(ppy)_3$, 5.36eV/2.96eV for Ir$(m-ppy)_3$, and 5.35eV/2.97eV for Ir$(p-toly)_3$ from the SCE(Standard Calomel Electrode). The electrically determined band gaps are 2.38eV (521nm), Ir$(ppy)_3$, 2.4OeV (517nm), Ir$(m-ppy)_3$, and 2.38eV (521nm). Ir$(p-toly)_3$, which are similar with the optical band gaps. The position of methyl group on 2-phenylpyridine (ppy) effects do not influence much on the ionization potential, electron affinity, and band gap of Ir$(ppy)_3$ derivatives.