• 제목/요약/키워드: Electromyography activity

검색결과 638건 처리시간 0.05초

운동학적 근전도의 활용 (The use of kinesiologic electromyography)

  • 원종임
    • 대한물리치료과학회지
    • /
    • 제9권4호
    • /
    • pp.169-176
    • /
    • 2002
  • The kinesiologic electromyograhy(KEMG) is one of the most common use in physical therapy for understanding normal function and dysfunction of the neuromuscular system. Physical therapists concerned to patterns of muscle response, position, type of muscle contraction, onset and cessation of activity, the level of muscle response in relation to effort, and type of muscle contraction. Also they are use KEMG to assess the exercises for facilitate or for inhibit specific muscle activity. However there is a few references that provide information of KEMG Thus, the purpose of this article is for the use and interpretation of KEMG data. This article will guide beginning researchers for collecting, managing and analyzing of KEMG data.

  • PDF

EMG Activities of Trunk and Lower Extremity Muscles Induced by Different Intensity of Whole Body Vibration During Bridging Exercise

  • Kim, Tack-Hoon;Choi, Houng-Sik
    • 한국전문물리치료학회지
    • /
    • 제16권4호
    • /
    • pp.16-22
    • /
    • 2009
  • The purpose of this study was to investigate the trunk and lower extremity muscle activity induced by three different intensity conditions (intensity 1, 3, 5) of whole body vibration (WBV) during bridging exercise. Surface electromyography (EMG) was used to measure trunk and lower extremity muscles activity. Eleven healthy young subjects (6 males, 5 females) were recruited from university students. The collected EMG data were normalized using reference contraction (no vibration during bridging) and expressed as a percentage of reference voluntary contraction. To analyze the differences in EMG data, the repeated one-way analysis of variance was used. A Bonferroni's correction was used for multiple comparisons. The study showed that EMG activity of the rectus abdominis, external oblique, internal oblique, erector spinae and rectus femoris muscles was not significantly different among three intensity conditions of WBV during bridging exercise (p>.05). However, there were significantly increased EMG activity of the medial hamstring muscle (p=.001) and medial gastrocnemius muscle (p=.027) in the intensity 3 condition compared with the intensity 1 condition. This result can be interpreted that vibration was absorbed through the distal muscles, plantar flexor and knee flexor.

  • PDF

Effect of Various Leg-Crossing Positions on Muscle Activities of Rectus Femoris, Tensor Fascia Latae, and Hamstring in Healthy 20's Adults

  • Lee, Won-Hwee;Kang, Tae-Hee;Kim, Jeong-Ha;suryanti, Tri
    • The Journal of Korean Physical Therapy
    • /
    • 제27권5호
    • /
    • pp.315-319
    • /
    • 2015
  • Purpose: The purpose of this study was to investigate the effect of leg-crossing positions on muscle activities of rectus femoris, tensor fascia latae, and hamstring in healthy 20's adults. Methods: Twenty healthy subjects were asked to perform three leg-crossing positions, leg crossing (LC), tailor crossing (TC), and ankle crossing (AC). Surface electromyography (EMG) was used to evaluate the activities of rectus femoris, tensor fascia latae, and hamstring during upright sit posture (UP) and three leg-crossing positions and UP was compared to three leg-crossing positions. Repeated one way ANOVA was used for data analysis. The alpha level was set at 0.05. Results: The results showed significant difference in the muscle activities of rectus femoris, tensor fascia latae, and hamstring among leg-crossing positions. The muscle activity of the rectus femoris was significantly lower in LC and TC positions than UP. The muscle activity of tensor fascia latae was significantly higher in LC position than UP and other leg-crossing positions. The muscle activity of hamstring was significantly higher in LC and TC positions and significantly lower in AC position than in UP. Conclusion: Our study suggests that the activity of hip muscles was affected by pelvic and knee alignment in various leg-crossing positions.

파워워킹과 일반보행의 운동학적 및 EMG 비교분석 (The Comparative Analysis of Kinematic And Emg on Power Walking and Normal Gait)

  • 조규권;김유신;김은정
    • 한국운동역학회지
    • /
    • 제16권2호
    • /
    • pp.85-95
    • /
    • 2006
  • The purpose of this study of which 10 University students in their twenties are the objects was to examine the causal differences of kinematic and electromyography during power walking and normal gait. We came to the following conclusions. 1) It took less time to stance phase, swing phase and whole gait time during power walking compared with normal gait. 2) During power walking, the step length and step length and lower limb length are longer than that of normal gait. 3) During power walking, ankle joint angle became more plantar flexed at LIC and RTO, knee joint angle become more flexed, so did hip joint angle at LIC and RTO. Besides during power walking the shoulder joint angle movement was bigger and elbow joint angle was more flexed as the trait of power walking. 4) During power walking, through out the phase the muscle activity of all muscle was higher expecially the muscle activity of Biceps brachii, gastrocnemius medialis, gastrocnemius lateralis, Soleus was higher. Therefore during power walking, one's scope of activity and muscle activity is relatively higher than those of normal gait, so power walking helps one strengthen muscular power and energy metabolism. This will be useful information for those who are interested in diet and well-being.

Comparison of the Electromyographic Activity in the Lower Trapezius Muscle According to Four Different Types of Exercises in Healthy Adults

  • Seo, Gyeong Ju;Park, Ji Won;Kwon, Yonghyun
    • The Journal of Korean Physical Therapy
    • /
    • 제31권2호
    • /
    • pp.134-139
    • /
    • 2019
  • Purpose: This study examined the most effective exercise while performing shoulder abduction below ninety degrees. Methods: Thirty two healthy individuals (17 males, 15 females) participated and performed four exercises, 1) Posterior fly, 2) Prone row, 3) Modified prone cobra, and 4) External rotation in the prone position. Surface electromyography (sEMG) was used to measure the electrical activities for the lower, middle and upper fiber of trapezius and serratus anterior. Results: A significant difference in the muscle activities of the upper/middle/lower trapezius and serratus anterior was observed among the three different positions in terms of the PF (posterior fly), PR (prone row), and MPC (modified prone cobra) (p<0.05). In post-hoc analysis, the activities of the lower and upper trapezius were significantly higher than those of the upper trapezius and serratus anterior (p<0.05). In addition, in ERP (external rotation in prone), there was a significant difference in each activity of the muscles. Post-hoc results indicated that the upper trapezius showed greater EMG activity than the other three muscles. Conclusion: External rotation in the prone position revealed the highest activation of the lower trapezius compared to upper trapezius muscle activity. This may be particularly useful in isolating the lower trapezius in cases where excessive scapular elevation is noted. Therefore, the most effective lower trapezius exercise should be performed below ninety degrees of shoulder abduction.

Effects of the Additional Scapular Posterior Tilt Movement on Selective Muscle Activation of the Lower Trapezius during Prone Shoulder Extension

  • Kim, Sooyong;Kang, Minhyeok
    • 국제물리치료학회지
    • /
    • 제12권2호
    • /
    • pp.2308-2313
    • /
    • 2021
  • Background: Although the scapular posterior tilt movement could facilitate the lower trapezius (LT) muscle activity, no study identified the effects of the scapular posterior tilt movement on the selective activation of the LT muscle during prone shoulder extension. Objectives: To examine the influences of additional scapular posterior tilt on electromyography (EMG) of the upper trapezius (UT) and the LT muscles during prone shoulder extension. Design: Cross-sectional study. Methods: There were 15 asymptomatic male participants in this study who performed prone shoulder extension with and without scapular posterior tilt movements. For the scapular posterior tilt movements, participants performed visual biofeedback training for scapular movement using motion sensor. During the exercises, the EMG activity of the UT and LT was recorded using surface EMG system. Results: The EMG activity of the LT significantly increased during prone shoulder extension with scapular posterior tilt compared to that of general prone shoulder extension, whereas that of the UT was not significantly different between the two exercises. Moreover, scapular posterior tilt application significantly decreased UT/LT muscle activity ratio. Conclusion: Scapular posterior tilt movement may be emphasized during exercise when facilitating LT muscle activation.

Correlation between the Pressure Pain Threshold and Sonography and Spontaneous Electrical Activity in Myofascial Trigger Points

  • Kim, Hyun-Jin;Kim, Myung-Hoon;Kim, Su-Hyon;Oh, Seok;Choi, Ji-Ho;Kim, Tae-Youl
    • The Journal of Korean Physical Therapy
    • /
    • 제22권3호
    • /
    • pp.17-21
    • /
    • 2010
  • Purpose: This study was designed to investigate possibilities for quantitative analysis using the electromyography and sonography. For better understanding, we evaluated the correlation between the pressure pain threshold and sonography, spontaneous electrical activity in trigger points located in the upper trapezius muscle. Methods: Thirty three active subjects volunteered to participate in this study (n=33). They had a palpable taut band, exquisite spot tenderness of a nodule in a taut band, spontaneous pain, referred pain, jump sign, local twitch response, and a painful limit to full stretch range of motion. We measured Pressure pain threshold, density, white area index, root mean square, and reaction. Pearson’s correlation coefficient was calculated to estimate the relationship between the pressure pain threshold and other variables including density, white area index, root mean square, and reaction time. Results: There were significant correlations between pressure pain threshold and density (r=-0.75, p<0.01), and between pressure pain threshold and white area index (r=-0.74, p<0.01). A significant correlations between pressure pain threshold and root mean square (r=-0.59, p<0.01). The significant correlation was found between pressure pain threshold and reaction time (r=-0.64, p<0.01). Conclusion: These should indicate whether quantitative analysis can be done using the characteristics of electromyography and sonography.

근전도 바이오피드백을 이용한 숏 풋 운동이 정적으로 선 자세 동안 발의 안쪽 세로활 유지에 미치는 영향 (Effect of the Short foot Exercise Using an Electromyography Biofeedback on Medial Longitudinal Arch During Static Standing Position)

  • 차상민;강민혁;문동철;오재섭
    • 한국전문물리치료학회지
    • /
    • 제24권1호
    • /
    • pp.9-18
    • /
    • 2017
  • Background: Short foot exercise (SFex) is often prescribed and performed in the sport and rehabilitation fields to strengthen intrinsic foot muscles. However, SFex is difficult to perform because of lack of feedback methods. Objects: The aim of this study was to compare the effects of SFex with and without electromyography (EMG) biofeedback on the medial longitudinal arch (MLA) of healthy individuals who maintained a static standing position. Methods: All participants (14 males and 12 females) were randomly divided into two groups (biofeedback and non-biofeedback groups). The EMG activity of the abductor hallucis (AbdH) and tibialis anterior (TA) and the MLA angle on the dominant leg side were measured with the participant in the standing position in the pre- and post-intervention conditions. The intervention session consisted of 15 minutes of SFex with (biofeedback group) or without (non-biofeedback group) EMG biofeedback. The groups were compared using two-way repeated measures analysis of variance. Results: The post-intervention activities of the AbdH muscle (p<.05) and the AbdH/TA ratio (p<.05) were significantly greater in the biofeedback group than in the non-biofeedback group. The activity of the TA (p<.05) and the MLA angle (p<.05) in the biofeedback group were significantly lower in the post-intervention condition than in the pre-intervention condition. Conclusion: The present findings demonstrate that the combination of SFex and EMG biofeedback can effectively facilitate the muscle activity of the AbdH and strengthen the medial longitudinal arch.

삼두근 근력 운동 시 운동 자세와 전완 자세에 따른 삼두근 장두와 외측두의 근 활성도 비교 (A Comparison of EMG Activity for Long and Lateral Heads of Triceps Brachii Muscles According to Exercise and Forearm Positions During Triceps Strengthening Exercises)

  • 김시현;이원휘;하성민;박규남;권오윤
    • 한국전문물리치료학회지
    • /
    • 제18권1호
    • /
    • pp.28-36
    • /
    • 2011
  • The aim of this study was to compare electromyography activity for long and lateral heads of triceps brachii muscle according to forearm positions during different triceps strengthening exercises. The muscle activities for long and lateral head of triceps brachii were measured by surface electromyography. Fifteen healthy volunteers participated for this study and performed elbow extension in three different elbow extension exercises (elbow extension in a supine position; EES, elbow extension with shoulder abduction at 90 degrees in a prone position; EESA, and elbow extension with one arm at the side of the trunk in a prone position; EESP) and forearm positions (supination, neutral, and pronation). A two-way repeated measures ANOVA was used to compare the effects of the exercise positions and forearm positions. The EMG activities of the long head of the triceps brachii increased significantly during EESP with forearm supination, whereas the activity of the lateral head of the triceps brachii increased significantly during EESA with the forearm in a neutral position (p<.05). The results of this study suggest that exercise positions and forearm positions should be considered for selectively strengthening the long and lateral heads of triceps brachii muscles.

정지신호과제의 수행에 따른 보행정지 시 다리 근전도 및 지면반발력 비교 (Comparison of Lower Extremity Electromyography and Ground Reaction Force during Gait Termination according to the Performance of the Stop Signal Task)

  • 구동균;권중원
    • PNF and Movement
    • /
    • 제20권1호
    • /
    • pp.135-145
    • /
    • 2022
  • Purpose: The purpose of this study was to investigate the association between cognitive and motor inhibition by comparing muscle activity and ground reaction force during unplanned gait termination according to reaction time measured through the stop-signal task. Methods: Sixteen young adults performed a stop-signal task and an unplanned gait termination separately. The subjects were divided into fast and slow groups based on their stop-signal reaction time (SSRT), as measured by the stop-signal task. Electromyography (EMG) and ground reaction force (GRF) were compared between the groups during unplanned gait termination. The data for gait termination were divided into three phases (Phase 1 to 3). The Mann-Whitney U test was used to compare spatiotemporal gait parameters and EMG and GRF data between groups. Results: The slow group had significantly higher activity of the tibialis anterior in Phase 2 and Phase 3 than the fast group (p <0.05). In Phase 1, the fast group had significantly shorter time to peak amplitude (TPA) of the soleus than the slow group (p <0.05). In Phase 2, the TPA of the tibialis anterior was significantly lower in the fast group than the slow group (p <0.05). In Phase 3, there was no significant difference in the GRF between the two groups (p >0.05). There were no significant difference between the two groups in the spatiotemporal gait parameters (p >0.05). Conclusion: Compared to the slow group, the fast group with cognitive inhibition suppressed muscle activity for unplanned gait termination. The association between SSRT and unplanned gait termination shows that a participant's ability to suppress an incipient finger response is relevant to their ability to construct a corrective gait pattern in a choice-demanding environment.