• Title/Summary/Keyword: Electromagnetic wave absorbing

Search Result 97, Processing Time 0.029 seconds

The Physical Properties and Shielding Efficiency of Electromagnetic Wave Shielding Cement Mortar Using Magnetite-Carbon (Magnetite-Carbon을 이용한 전자파 흡수형 차폐 시멘트 모르터의 물리적 특성과 차폐효율)

  • Park Dong Cheol;Lee Sea Hyun;Song Tae Hyup;Shin Jong Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.608-611
    • /
    • 2004
  • As the use of various electronic equipments has been increased recently according to industrialization and information network establishment, concern about electromagnetic wave exposed environment has also been increased. Therefore, this study aims to verify electromagnetic wave absorbing effects of inorganic paint that is made of carbon, electro-conductive materials with regard to its physical characteristics, its electromagnetic wave absorbing rate through a mock-up test for proving its effects in the indoor condition. The results are as follows: The results of running tests on electromagnetic wave absorbing inorganic paints for checking their requirements as painting material such as adherence degree, resistance to fine crack, resistance to washing, alkali-resistance, discoloration-resistance, etc. show that inorganic paints have the physical characteristics meeting the requirements for painting materials. In addition, it shows that the electromagnetic wave absorbing effect, in line with the number of paintings and the thickness of paintings, secures $75\~89\%$ of efficiency. And the mock-up test shows that the electromagnetic wave absorbing effect inside building is directly proportional to the distance from the source of electromagnetic wave such as electronic equipments.

  • PDF

A Study on Electromagnetic Wave Absorbing Properties of $Ni_{0.6}-Cu_{0.1}-Zn_{0.3}{\cdot}Fe_2O_4$ Ferrite-Rubber Composite by Addition of Carbon ($Ni_{0.6}-Cu_{0.1}-Zn_{0.3}{\cdot}Fe_2O_4$ Ferrite-Rubber Composite의 카본 첨가효과)

  • Park, Youn-Joon;SaGong, Geon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.149-154
    • /
    • 2000
  • In this paper, we studied the relation between addition of carbon and electromagnetic wave absorbing properties of ferrite-rubber composite. The ratio of carbon was 7 wt%. As s result, it has been shown that the electromagnetic wave absorbing properties of ferrite-rubber composite are changed by the addition of carbon in composite. And, we can control electromagnetic wave absorbing properties of ferrite-rubber composite by the using of carbon.

  • PDF

A Study on Electromagnetic Wave Absorbing Properties of $Ni_{0.6}-A_{0.1}-Zn_{0.3}{\cdot}Fe_2O_4$ Ferrite-Rubber Composite by the variation of using amount of Ferrite ($Ni_{0.6}-A_{0.1}-Zn_{0.3}{\cdot}Fe_2O_4$ Ferrite-Rubber Composite의 Ferrite 함량에 따른 전파흡수특성)

  • Park, Youn-Joon;SaGong, Geon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.162-166
    • /
    • 2000
  • In this paper, we studied the relation between using amount of Ferrite and electromagnetic wave absorbing properties of ferrite-rubber composite. The variation of using amount of Ferrite have been 52 wt.% ~ 62 wt.%. As s result, it has been shown that the electromagnetic wave absorbing properties of ferrite-rubber composite are related to the using amount of Ferrite in composite. And, we can control electromagnetic wave absorbing properties of ferrite-rubber composite by the control of using amount of Ferrite.

  • PDF

Electromagnetic Wave Absorbing Properties of $Ni_{0.5}-A_{0.1}-Zn_{0.4}{\cdot}Fe_2O_4$ Ferrite-Rubber Composite with amounts of a Ferrite (Ferrite 함량변화에 대한 $Ni_{0.5}-A_{0.1}-Zn_{0.4}{\cdot}Fe_2O_4$ Ferrite-Rubber Composite의 전파흡수특성)

  • Park, Y.J.;Shin, K.H.;Heo, J.;SaGong, G.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.45-49
    • /
    • 2002
  • In this paper, we have studied about electromagnetic wave absorbing properties of ferrite-rubber composite with a variation of ferrite. Amounts of ferrite in a composite absorber were changed from 52 wt.% to 62 wt.%. As a result, it has been shown that the electromagnetic wave absorbing properties of ferrite-rubber composite are related to the amount of ferrite in composite absorber. As a summary, it could be controled the electromagnetic wave absorbing property of ferrite-rubber composite by changing some kinds of annex A and amount of ferrite.

  • PDF

A Study on Electromagnetic Wave Absorbing Properties of $Ni_{0.6}-A_{0.1}-Zn_{0.3}{\cdot}Fe_2O_4$ Ferrite-Rubber Composite by Heat-Treatment Temperature of Ferrite (전파흡수체용 $Ni_{0.6}-A_{0.1}-Zn_{0.3}{\cdot}Fe_2O_4$의 열처리 온도에 따른 Ferrite-Rubber Composite의 전파흡수특성)

  • Park, Youn-Joon;SaGong, Geon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.155-161
    • /
    • 2000
  • In this paper, we studied the relation between heat-treatment temperature of ferrite and electromagnetic wave absorbing properties of ferrite-rubber composite. The heat-treatment temperatures of ferrite are 1200 and $1300^{\circ}C$, 2 hr. As s result. it has been shown that the optimum heat-treatment temperature of ferrite for electromagnetic wave absorber are related to the chemical composition. And, we can control electromagnetic wave absorbing properties of ferrite-rubber composite by the control of heat-treatment temperature of ferrite.

  • PDF

A Study on Measuring Technique of Electromagnetic Wave Absorbing Characteristics of Microwave Absorbers (전파흡수체의 전파흡수특성측정기법에 관한 연구)

  • 김동일;안영섭;정세모
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1992.10a
    • /
    • pp.2-29
    • /
    • 1992
  • According to the increase of occupation density of microwave frequency band on use microwave environments have been congested extensively. For shielding unnecessary electromagnetic wave of preventing the electromagnetic wave reflection a good conductor a low resistive material or a lossy material is mainly used. As a method to measure the absorbing characteristics of microwave absorber the fundamental microwave measuring method can be used. There is however a big problem in measuring errors since the wavelength of microwave is very short especially as in the case as microwave absorber for RADAR. Therefore this research aimed to a converting adaptor of 20mm${\Phi}$ coaxial tube from a Type-N connector to 20mm${\Phi}$ coaxial tube and to use it for designing microwave absorber and evaluating absorbing characteristics. Furthermore the measurements of absorbing characteristics and material constants have performed and reviewed which were carried out by using the coaxial tube in the short type and by using rectangular waveguide respectively As a result the validity of the measured values have been confirmed.

  • PDF

A Study on Electromagnetic Wave Absorbing Properties of $Ni_{0.5}-A_{0.1}-Zn_{0.4}{\cdot}Fe_2O_4$ Ferrite-Rubber Composite by the variation of using amount of Ferrite ($Ni_{0.5}-A_{0.1}-Zn_{0.4}{\cdot}{Fe_2}{O_4}$ Ferrite-Rubber Composite의 Ferrite 함량에 따른 전파흡수특성에 관한 연구)

  • 박연준;김동일
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.160-164
    • /
    • 2000
  • In this paper, we studied the relation between using amount of Ferrite and electromagnetic wave absorbing properties of ferrite-rubber composite. The variation of using amount of Ferrite have been 52 wt.% ~ 62 wt.%. As s result, it has been shown that the electromagnetic wave absorbing properties of ferrite-rubber composite are related to the using amount of Ferrite in composite. And, we can control electromagnetic wave absorbing properties of ferrite-rubber composite by the control of using amount of Ferrite.

  • PDF

Effects of Sheet Thickness on the Electromagnetic Wave Absorbing Characterization of Li0.375Ni0.375Zn0.25-Ferrite Composite as a Radiation Absorbent Material

  • Kim, Dong-Young;Yoon, Young-Ho;Jo, Kwan-Jun;Jung, Gil-Bong;An, Chong-Chul
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.3
    • /
    • pp.150-158
    • /
    • 2016
  • This paper reports on a study of LiNiZn-ferrite composite as a radiation absorbent material (RAM). The electromagnetic (EM) wave absorbers are composed of an EM wave absorbing material and a polymeric binder. The surface morphology, chemical composition, weight percent of the ferrite composite of the toroid sample, magnetic properties, and return loss are investigated using field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), and network analyzer. For preparing the absorbing sheet, chlorinated polyethylene (CPE) is used as a polymeric binder. The EM wave absorption properties of the prepared samples were studied at 4 - 8 GHz. We can confirm the effects of the thickness of the samples for absorption properties. An absorption bandwidth of more than a 10-dB return loss shifts toward a lower frequency range along with an increase in the thickness of the absorber.

A new absorbing foam concrete: preparation and microwave absorbing properties

  • Xingjun, Lv;Mingli, Cao;Yan, Li;Xin, Li;Qian, Li;Rong, Tang;Qi, Wang;Yuping, Duan
    • Advances in concrete construction
    • /
    • v.3 no.2
    • /
    • pp.103-111
    • /
    • 2015
  • The foam concrete was fabricated by adding the foaming agent which composite ordinary Portland cement with plant and animal protein into cement paste, and the electromagnetic wave absorption properties were studied for the first time as well. The studies showed that the electromagnetic waves can be absorbed by multiple reflections and scattering within the porous material. Thickness and filling ratio have a great influence on the electromagnetic wave absorbing properties in 2-18 GHz of the foam concrete, the greater the thickness, the better the performance of absorption; filling ratio was about 52 vol.%, the absorbing properties achieved the best.

Preparation and Electromagnetic Properties of an Electromagnetic Wave Absorber

  • Sun, Chang;Sun, Kangning;Pang, Laixue;Liu, Jian
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.61-64
    • /
    • 2016
  • In this study, we report the as-prepared MgO-doped $BaFe_{12}O_{19}$, which was prepared by calcination technique and high-energy ball milling process, as an electromagnetic wave absorber. The phase analysis of $BaFe_{12}O_{19}$ and the as-prepared MgO-doped $BaFe_{12}O_{19}$ was detected utilizing X-ray Diffractometer (XRD). The microstructure was characterized using Scanning Electron Microscope (SEM). By means of the transmission/reflection coaxial line method, the electromagnetic properties and microwave absorbing properties of the as-prepared electromagnetic wave absorber were studied. It is found that the electromagnetic wave absorber has a minimum reflection loss value of -41 dB at 4.27 GHz with a matching thickness of 2.6 mm. The experiment results revealed that the as-prepared electromagnetic wave absorber could find potential applications in many military as well as commercial industries.