• Title/Summary/Keyword: Electromagnetic simulation

Search Result 1,578, Processing Time 0.024 seconds

An Advanced Method of Simulation and Analysis for Electromagnetic Environment on the Mobile Receiver in a Shielded Anechoic Chamber

  • Kim, Jung-Hoon;Rhee, Joong-Geun
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.4
    • /
    • pp.229-234
    • /
    • 2006
  • This paper presents an advanced method of simulation for EM(electromagnetic) environment that affects on mobile receivers. A new calibration algorithm in the process of simulation is introduced. With a proposed calibration method, the time required for simulation is reduced and this makes it possible to simulate a near-real time EM environment in a shielded anechoic chamber. EM environment data acquisition and logging techniques with GPS for simulation were developed.

Sensitivity Analysis of Numerical Variables Affecting the Electromagnetic Forming Simulation of a High Strength Steel Sheet Using a Driver Sheet (수치적 변수들이 배면판을 이용한 고강도 강판의 전자기 성형 해석에 미치는 영향도 분석)

  • Park, H.;Lee, J.;Lee, Y.;Kim, J.H.;Kim, D.
    • Transactions of Materials Processing
    • /
    • v.28 no.3
    • /
    • pp.159-166
    • /
    • 2019
  • Electromagnetic forming (EMF) simulations consider 3-dimensionally coupled electromagnetic-mechanical phenomenon using LS-DYNA, therefore the calculation cost is normally expensive. In this study, a sensitivity analysis in regard to the simulation variables affecting the calculation time was carried out. The EMF experiments were conducted to form an elliptically protruding shape on a high-strength steel sheet, and it was predicted using LS-DYNA simulation. In this particular EMF simulation case, the effect of several simulation variables, viz., element size, contact condition, EM-time step interval, and re-calculation number of the EM matrices, on the shape of elliptical protrusion and the total calculation time was analyzed. As a result, reasonable values of the simulation variables between the simulation precision and calculation time were proposed, and the EMF experiments with respect to the charging voltages were successfully predicted.

Commercial and In-house Simulator Development Trend for Electromagnetic Analysis of Autonomous Driving Environments (자율주행 환경의 전자기 해석을 위한 상용 및 자체 시뮬레이터 개발 동향)

  • Park, Woobin;Kim, Moonseong;Lee, Woochan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.17 no.4
    • /
    • pp.31-42
    • /
    • 2021
  • In the modern era, radio wave analysis is necessary for various fields of engineering, and interpretation of this is also indispensable. Self-driving cars need multiple different electronic components, and thus accurate and fast electromagnetic simulator for this kind of complex radio environment is required for self-driving simulations. Accordingly, the demand for self-driving simulators as well as existing electromagnetic analysis software has increased. This paper briefly describes the characteristics of numerical analysis techniques for electromagnetic analysis, self-driving simulation software, and conventional electromagnetic simulation software and also summarizes the characteristics of each software. Finally, the verification of the result from in-house code compared to HFSS is demonstrated.

Electromagnetic Interference Analysis of an Inhomogeneous Electromagnetic Bandgap Power Bus for High-Speed Circuits

  • Cho, Jonghyun;Kim, Myunghoi
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.4
    • /
    • pp.237-243
    • /
    • 2017
  • This paper presents an analysis of the electromagnetic interference of a heterogeneous power bus where electromagnetic bandgap (EBG) cells are irregularly arranged. To mitigate electrical-noise coupling between high-speed circuits, the EBG structure is placed between parallel plate waveguide (PPW)-based power buses on which the noise source and victim circuits are mounted. We examine a noise suppression characteristic of the heterogeneous power bus in terms of scattering parameters. The characteristics of the dispersion and scattering parameters are compared in the sensitivity analysis of the EBG structure. Electric field distributions at significant frequencies are thoroughly examined using electromagnetic simulation based on a finite element method (FEM). The noise suppression characteristics of the heterogeneous power bus are demonstrated experimentally. The heterogeneous power bus achieves significant reduction of electrical-noise coupling compared to the homogeneous power buses that are adopted in conventional high-speed circuit design. In addition, the measurements show good agreement with the FEM simulation results.

Clutter Modeling for HILS (HILS를 위한 클러터 모델링)

  • 최승호
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1999.04a
    • /
    • pp.26-31
    • /
    • 1999
  • As a part of work to simulate electromagnetic environments for Hareware-In-the-Loop Simulation, clutter signals of pulsed dopplar radar(altimeter) and CW radar are modeled as numerical expressions for various parameters. The simulated results show that this method is applicable to simulate complex electromagnetic environments.

  • PDF

Analysis of Complex Ground Systems using Electromagnetic Simulation Method (전자계 시뮬레이션 도구를 이용한 복합 형상의 접지 시스템 해석)

  • Kim, Youngjin;Kim, Jaehyung;Kim, Sungju
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.1
    • /
    • pp.48-53
    • /
    • 2016
  • This paper deals with analysis of complex grounding system using electromagnetic simulation method. Electrical devices could be damaged by transient voltage such as a lightning surge. Therefore the measures to protect the equipments from transient, such as a lightning are required. The ground system is important in this respect. The representative parameter of grounding system performance is earth ground resistance. Precise prediction of earth resistance is required, because it is difficult to modify and change after the completion of the grounding system construction. Numerical modeling is often used in numerical analysis to identify the electrical characteristics of the grounding system. However complex systems are difficult to predict grounding characteristics by numerical analysis. If the total electric field of the earth in general is similar to the antenna model, in that the incident electric field and expressed as a sum of the scattering field. In this study, the electromagnetic field simulation tool "ANSYS HFSS" module containing the antenna model was used to analyze performance of ground system. Both the simple and complex grounding system were analyzed by simulation tool and experimental method. As a result simulation method is effective to predict performance of a complex ground system.

Investigation of the semi-active electromagnetic damper

  • Montazeri-Gh, Morteza;Kavianipour, Omid
    • Smart Structures and Systems
    • /
    • v.13 no.3
    • /
    • pp.419-434
    • /
    • 2014
  • In this paper, the electromagnetic damper (EMD), which is composed of a permanent-magnet rotary DC motor, a ball screw and a nut, is considered to be analyzed as a semi-active damper. The main objective pursued in the paper is to study the two degrees of freedom (DOF) model of the semi-active electromagnetic suspension system (SAEMSS) performance and energy regeneration controlled by on-off and continuous damping control strategies. The nonlinear equations of the SAEMSS must therefore be extracted. The effects of the EMD characteristics on ride comfort, handling performance and road holding for the passive electromagnetic suspension system (PEMSS) are first analyzed and damping control strategies effects on the SAEMSS performance and energy regeneration are investigated next. The results obtained from the simulation show that the SAEMSS provides better performance and more energy regeneration than the PEMSS. Moreover, the results reveal that the on-off hybrid control strategy leads to better performance in comparison with the continuous skyhook control strategy, however, the energy regeneration of the continuous skyhook control strategy is more than that of the on-off hybrid control strategy (except for on-off skyhook control strategy).

Simulation of Active Compensated Pulsed Alternator with a Laser Flashlamp Load Based on Simplified Model

  • Yuan, Pei;Yu, Kexun;Ye, Caiyong;Ren, Zhang'ao
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.4
    • /
    • pp.434-439
    • /
    • 2012
  • This paper presents a nontraditional laser power system in which an active compensated pulsed alternator (ACPA) drives a flashlamp directly without the use of capacitor groups. As a result, the volume of the laser system is decreased because of the high energy density of the ACPA. However, the difficulty in matching the output of the alternator with the laser flashlamp is a significant issue and needs to be well analyzed. In order to solve this problem, based on the theory for ACPA, the authors propose a simplified model for the system of ACPA with flashlamp load by the way of circuit simulation. The simulation results preliminarily illuminate how the performance of the ACPA laser power system is affected. Meanwhile, the simulation results can also supply a consultation for future ACPA laser power system design and control.

Numerical Analysis of Electromagnetic Fields in the Time-Domain (시간영역에서의 전자장 수치해석)

  • 남상욱
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.2 no.4
    • /
    • pp.66-73
    • /
    • 1991
  • This paper reviews two representative time-domain techniques for the simulation of the electromagnetic fields, which are known as FD - TD and TLM. The fundamental ideas of two tec- hniques are explained in detail. Also, the implimentation of the boundary conditions, the statability condition, and the representation of media in the problems are described briefly.

  • PDF

Development of Educational Electromagnetic Simulator using Java (자바를 이용한 교육용 전자계 시뮬레이터 개발)

  • 김태용
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2003.11a
    • /
    • pp.181-184
    • /
    • 2003
  • Electromagnetic field simulator have been developed on Java 2 platform (J2SE) because provides robust solutions for applications as well as object oriented design. The simulator can be easily utilized with independent platform. Physical variables for the simulator can be controlled by the user. The numerical results are immediately displayed with graphical images in real time. Therefore, this simulator is intended to be used for education such as antenna engineering, microwave engineering, electromagnetic theory and so on.

  • PDF