• Title/Summary/Keyword: Electromagnetic physics

Search Result 196, Processing Time 0.022 seconds

The medium-band observation of the neutrino source, TXS 0506+056

  • Hwang, Sungyong;Im, Myungshin;Taak, Yoonchan;Paek, Insu;Choi, Changsu;Shin, Suhyun;Ji, Tae-Geun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.73.4-73.4
    • /
    • 2019
  • The TXS0506+056 is a blazar and counterpart of the neutrino event IceCube-170922A. It is the first time that the neutrino event and flaring event in electromagnetic wave (EM) coincided. We observed TXS0506+056 with medium-bands in optical using 0.25m and 2.1m telescope at McDonald observatory about a month after the neutrino event. We tracked the variability of SED of the target for three weeks, and our observation showed no abrupt variability in optical range during this period. We concluded that a month after the neutrino event, the TXS0506+056 became less active and shows no feature of the energetic event. We also concluded that the medium-bands are well suited for tracking SEDs of objects. Our result demonstrates the potential of the wide-field 0.25m telescope (5.5 deg^2) for finding transient objects and track the variability of sources like AGNs.

  • PDF

Irreversible Magnetization of MgB2 Superconductor

  • Kim, Mun-Seog;Kim, Kyu-Tae;Kim, Wan-Seop;Park, Po-Gyu;Lee, Kyu-Won;Lee, Sung-Ik
    • Journal of Magnetics
    • /
    • v.10 no.4
    • /
    • pp.157-162
    • /
    • 2005
  • We report the magnetic-field dependence of the irreversible magnetization of binary superconductor $MgB_2$. For the temperature region of $T\;<\;0.9T_c$, the contribution of the bulk pinning to the magnetization overwhelms that of the surface pinning. This was evident from the fact that the magnetization curves, M(H), were well described by the critical-state model without considering the reversible magnetization and the surface pinning effect. It was also found that the M(H) curves at various temperatures scaled when the field and the magnetization were normalized by the characteristic caling factors H$\ast$(T) and M$\ast$(T), respectively. This feature suggests that the pinning mechanism determining the hysteresis in M(H) is unique below $T\;=\;T_c$.

Study of Coherent High-Power Electromagnetic Wave Generation Based on Cherenkov Radiation Using Plasma Wakefield Accelerator with Relativistic Electron Beam in Vacuum (진공 내 상대론적인 영역의 전자빔을 이용한 플라즈마 항적장 가속기 기반 체렌코프 방사를 통한 결맞는 고출력 전자파 발생 기술 연구)

  • Min, Sun-Hong;Kwon, Ohjoon;Sattorov, Matlabjon;Baek, In-Keun;Kim, Seontae;Hong, Dongpyo;Jang, Jungmin;Bhattacharya, Ranajoy;Cho, Ilsung;Kim, Byungsu;Park, Chawon;Jung, Wongyun;Park, Seunghyuk;Park, Gun-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.6
    • /
    • pp.407-410
    • /
    • 2018
  • As the operating frequency of an electromagnetic wave increases, the maximum output and wavelength of the wave decreases, so that the size of the circuit cannot be reduced. As a result, the fabrication of a circuit with high power (of the order of or greater than kW range) and terahertz wave frequency band is limited, due to the problem of circuit size, to the order of ${\mu}m$ to mm. In order to overcome these limitations, we propose a source design technique for 0.1 THz~0.3 GW level with cylindrical shape (diameter ~2.4 cm). Modeling and computational simulations were performed to optimize the design of the high-power electromagnetic sources based on Cherenkov radiation generation technology using the principle of plasma wakefield acceleration with ponderomotive force and artificial dielectrics. An effective design guideline has been proposed to facilitate the fabrication of high-power terahertz wave vacuum devices of large diameter that are less restricted in circuit size through objective verification.

A study on Actual Condition and Interfererence of Electromagnetic Fields inside of The Hospital (I) (의료기관내 전자파환경 실태와 그 영향 (I))

  • Lee, Jun-Ha;Shin, Hyun-Jin;Yoo, Heum
    • Progress in Medical Physics
    • /
    • v.8 no.1
    • /
    • pp.53-67
    • /
    • 1997
  • General hospitals have being under the influence of various and specific environment of electromagnetic field. The factors are development of medical electric equipment and device with enlarged functional demands, in high power and multi-frequency. It has all of both faces, EMI(electromagnetic interference) and EMS(electromagnetic susceptibility). In additional, expansion of personal communication system(cellular phone) has many unreliable factor of using time and area, making noise of electromagnetic fields. We studied actual conditions of EMI in the medical site, where is numerous medical equipment, especially central operation room and ICU(intensive care unit), AKR(artificial kidney room : hemo-dialysis unit), etc. The influence, most of medical equipments made electromagnetic nosie has various factors in its band of frequency, harmonics and strength. In the experimental use of electro-surgical unit and cellular phone, noticeable and considerable noise of eletromagnetic fields were measured. All of that can make trouble and errors on the steadiness of bioelectrical devices. In conclusion, It is necessary to reconsiderations of reallocating EMI source vs. EMS factor, and set to definite forbiding area of using cellular phone. For maintenance of steady normal conditions, in spite of existing any other legal standards of safty level, it need considering all of alternative electromagnetic situations on a case-by-case basis.

  • PDF

Singularity-Circumvented Computation of Green's Functions for 2D Periodic Structures in Homogeneous Medium

  • Kahng, Sung-Tek
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.2
    • /
    • pp.59-63
    • /
    • 2007
  • This paper suggests a novel method to efficiently calculate the spatial-domain Green's functions of 2D electromagnetic problems Briefly speaking, this method combines spectral and spatial domain calculation schemes and prevents the Green's functions from poor convergence due to the singularities that complicate the process of the Method of Moment(MoM) applications For the validation of this proposed method, fields will be evaluated along the spatial distance including zero distance for 2D free-space and periodic homogeneous geometry The numerical results show the validity of the prosed method and correspondng physics.

Novel Smart Polymeric Composites for Thermistors and Electromagnetic Wave Shielding Effectiveness from TiC Loaded Styrene-Butadiene Rubber

  • Sung, Yong-Kiel;Farid EI-Tantawy
    • Macromolecular Research
    • /
    • v.10 no.6
    • /
    • pp.345-358
    • /
    • 2002
  • The electrical conductivity during vulcanization process was measured as a function of time for the system of TiC loaded styrene-butadiene rubber (SBR) composites. The phenomenon of negative and positive temperature coefficients of conductivity and its conduction mechanism were also studied for the SBR polymeric composites. The current-voltage characteristics of the polymeric composites were non-linear in high voltage and showed a switching effect. The effects of temperature on the thermal conductivity and effective dielectric constant were measured. The measured parameters were found to be dependent on TiC concentration. The electromagnetic wave shielding (EMS) of the SBR-TiC polymeric composite was also examined. The SBR filled with TiC could be expected to be promising novel smart polymeric composites for self-electrical heating, temperature sensor, time delay switching, and electro-magnetic wave shielding effectiveness.

Propagation of electromagnetic and gravitational waves in braneworld (전자기파와 고차원 중력파 전달 고찰)

  • Lee, Tae Hoon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.385-388
    • /
    • 2019
  • Considering spherically symmetric spacetimes embedded in a 5-dimensional static Lorentzian manifold, within the large distance limit of DGP model, we study null geodesic equations. We discuss possible relations of particles following the geodesics with the gravitational waves detected recently, in comparison with the electromagnetic waves propagaing in these brane spacetimes.

Manipulation and diagnosis of femtosecond relativistic electron bunch using terahertz-driven resonators

  • Yang Xu;Yifang Song;Cheng-Ying Tsai;Jian Wang;Zhengzheng Liu;Kuanjun Fan;Jinfeng Yang;Oleg Meshkov
    • Nuclear Engineering and Technology
    • /
    • v.56 no.10
    • /
    • pp.4237-4246
    • /
    • 2024
  • Using strong electromagnetic fields generated by lasers to interact with electrons for precise diagnosis and manipulation of electron beams represents a recent focal point in accelerator technology. This approach surpasses the limitations of conventional RF technology, such as low electric field gradients and timing jitters, effectively enhancing the accuracy of ultrafast electron beam diagnostics and manipulations. As demands for precision continue to rise, the precise diagnosis of crucial parameters of ultrafast electron beams remains challenging. This study delves into the electromagnetic behavior of THz-driven devices and proposes an all-optical method utilizing single-cycle THz radiation to compress and characterize a 3 MeV electron beam. Particle tracking simulations demonstrate an astonishing compression effect, reducing the bunch length from 54.0 fs to 4.3 fs, and achieving sub-femtosecond bunch length measurement resolution. Moreover, when combined with an orthogonal THz streak camera, this method shows even greater potential in multi-bunch scenarios.

GECKO Optical Follow-up Observation of Three Binary Black Hole Merger Events

  • Kim, Joonho;Im, Myungshin;Paek, Gregory S.H.;Lee, Chung-Uk;Kim, Seung-Lee;Chang, Seo-Won;Choi, Changsu;Hwang, Sungyong;Kang, Wonseok;Kim, Sophia;Kim, Taewoo;Lee, Hyung Mok;Lim, Gu;Seo, Jinguk;Sung, Hyun-Il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.53.3-54
    • /
    • 2021
  • We present optical follow-up observation results of three binary black hole merger (BBH) events, GW190408 181802, GW190412, and GW190503 185404, which were detected by the Advanced Ligo and Virgo gravitational wave (GW) detectors. Electromagnetic (EM) counterparts are generally not expected for BBH merger events, however, some theoretical models suggest that EM counterparts of BBH can possibly arise in special environments. To identify EM counterparts of the three BBH merger events, we observed high-credibility regions of the sky with telescopes of the Gravitational-wave EM Counterpart Korean Observatory (GECKO), including the Korea Microlensing Telescope Network (KMTNet). Our observation started as soon as 100 minutes after the GW event alert and covered roughly 29 - 63 deg2 for each event with a depth of 22.5 mag in R-band within hours of observation. No plausible EM counterparts were found for these events. Our result gives a great promise for the GECKO facilities to find EM counterparts within few hours from GW detection in future GW observation runs.

  • PDF

X-ray/gamma radiation shielding properties of Aluminium-Bariume-Zinc Oxide nanoparticles synthesized via low temperature solution combustion method

  • K.V. Sathish;K.N. Sridhar;L. Seenappa;H.C. Manjunatha;Y.S. Vidya;B. Chinnappa Reddy;S. Manjunatha;A.N. Santhosh;R. Munirathnam;Alfred Cecil Raj;P.S. Damodara Gupta;B.M. Sankarshan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1519-1526
    • /
    • 2023
  • For the first time Aluminium-BariumeZinc oxide nanocomposite (ZABONC) was synthesized by solution combustion method where calcination was carried out at low temperatures (600℃) to study the electromagnetic (EM) (X/γ) radiation shielding properties. Further for characterization purpose standard techniques like PXRD, SEM, UV-VISIBLE, FTIR were used to find phase purity, functional groups, surface morphology, and to do structural analysis and energy band gap determination. The PXRD pattern shows (hkl) planes corresponding to spinel cubic phase of ZnAl2O4, cubic Ba(NO3)2, α and γ phase of Al2O3 which clearly confirms the formation of complex nano composite. From SEM histogram mean size of nano particles was calculated and is in the order of 17 nm. Wood and Tauc's relation direct energy band gap calculation gives energy gap of 2.9 eV. In addition, EM (X/γ) shielding properties were measured and compared with the theoretical ones using standard procedures (NaI (Tl) detector and multi channel analyzer MCA). For energy above 356 keV the measured shielding parameters agree well with the theory, while below this value slight deviation is observed, due to the influence of atomic/crystallite size of the ZABONC. Hence synthesized ZABONC can be used as a shielding material in EM (X/γ) radiation shielding.