• Title/Summary/Keyword: Electromagnetic physics

Search Result 196, Processing Time 0.032 seconds

Trichel Pulse in Negative DC Corona discharge and Its Electromagnetic Radiations

  • Zhang, Yu;Liu, Li-Juan;Miao, Jin-Song;Peng, Zu-Lin;Ouyang, Ji-Ting
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1174-1180
    • /
    • 2015
  • We investigate in this paper the radiated electromagnetic waves together with the discharge characteristics of Trichel pulse of negative DC corona discharge in air in pin-to-plate and wire-to-plate configurations. The feature of the current pulse and the frequency spectrum of the electromagnetic radiations were measured under various pressures and gas gaps. The results show that the repetition frequency and the amplitude of Trichel pulse current depend on the discharge conditions, but the rising time of the pulse relates only to the radius of needle or wire and keeps constant even if the other conditions (including the discharge current, the gas gap and the gas pressure) change. There exists the characterized spectrum of electromagnetic waves from negative corona discharge in Trichel pulse regime. These characterized radiations do not change their frequency at a given cathode geometry even if the averaged current, the gas gap or the air pressure changes, but the amplitude of radiations changes accordingly. The characterized electromagnetic radiations from Trichel pulse corona relate to the formation or the rising edge of current pulse. It confirms that the characterized radiations from Trichel pulse supply information of discharge system and provide a potential method for detecting charged targets.

Tokamak plasma disruption precursor onset time study based on semi-supervised anomaly detection

  • X.K. Ai;W. Zheng;M. Zhang;D.L. Chen;C.S. Shen;B.H. Guo;B.J. Xiao;Y. Zhong;N.C. Wang;Z.J. Yang;Z.P. Chen;Z.Y. Chen;Y.H. Ding;Y. Pan
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1501-1512
    • /
    • 2024
  • Plasma disruption in tokamak experiments is a challenging issue that causes damage to the device. Reliable prediction methods are needed, but the lack of full understanding of plasma disruption limits the effectiveness of physics-driven methods. Data-driven methods based on supervised learning are commonly used, and they rely on labelled training data. However, manual labelling of disruption precursors is a time-consuming and challenging task, as some precursors are difficult to accurately identify. The mainstream labelling methods assume that the precursor onset occurs at a fixed time before disruption, which leads to mislabeled samples and suboptimal prediction performance. In this paper, we present disruption prediction methods based on anomaly detection to address these issues, demonstrating good prediction performance on J-TEXT and EAST. By evaluating precursor onset times using different anomaly detection algorithms, it is found that labelling methods can be improved since the onset times of different shots are not necessarily the same. The study optimizes precursor labelling using the onset times inferred by the anomaly detection predictor and test the optimized labels on supervised learning disruption predictors. The results on J-TEXT and EAST show that the models trained on the optimized labels outperform those trained on fixed onset time labels.

Precision Validation of Electromagnetic Physics in Geant4 Simulation for Proton Therapy (양성자 치료 전산모사를 위한 Geant4 전자기 물리 모델 정확성 검증)

  • Park, So-Hyun;Rah, Jeong-Eun;Shin, Jung-Wook;Park, Sung-Yong;Yoon, Sei-Chul;Jung, Won-Gyun;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.20 no.4
    • /
    • pp.225-234
    • /
    • 2009
  • Geant4 (GEometry ANd Tracking) provides various packages specialized in modeling electromagnetic interactions. The validation of Geant4 physics models is a significant issue for the applications of Geant4 based simulation in medical physics. The purpose of this study is to evaluate accuracy of Geant4 electromagnetic physics for proton therapy. The validation was performed both the Continuous slowing down approximation (CSDA) range and the stopping power. In each test, the reliability of the electromagnetic models in a selected group of materials was evaluated such as water, bone, adipose tissue and various atomic elements. Results of Geant4 simulation were compared with the National Institute of Standards and Technology (NIST) reference data. As results of comparison about water, bone and adipose tissue, average percent difference of CSDA range were presented 1.0%, 1.4% and 1.4%, respectively. Average percent difference of stopping power were presented 0.7%, 1.0% and 1.3%, respectively. The data were analyzed through the kolmogorov-smirnov Goodness-of-Fit statistical analysis test. All the results from electromagnetic models showed a good agreement with the reference data, where all the corresponding p-values are higher than the confidence level $\alpha=0.05$ set.

  • PDF

CALIBRATION OF A NEW CAPACITIVE TORQUE SENSOR FOR MEASURING BASIC MAGNETIC CHARACTERISTICS WITH ELECTROMAGNETIC AND GRAVITATIONAL FORCES

  • Kim, M.Y.;Choi, K.L.;Choi, S.J.;Song, E.Y.;Lee, Y.H.;Hee, J.R.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.786-789
    • /
    • 1995
  • With a newly designed capacitive torque sensor a multipurpose magnetometer for measuring basic magnetic characteristics such as hyteresis loops, magnetic anisotropy and magnetostriction was built. In order to calibrate the capacitive torque sensor, we measured the output voltages of the sensor by applying the torques due to the electromagnetic and gravitational forces. Experimental results of the several calibration method for the capacitive torque sensor showed good agreement within 3 %.

  • PDF

Polarization-Dependent Electromagnetically-Induced Transparency by Using Metamaterial (편광 상태와 메타 물질을 이용한 전자기파 유도 에너지 전달 제어)

  • Park, Jin-Woo;Kim, Sung-Il;Jang, Won-Ho;Lee, Young-Pak
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.3
    • /
    • pp.406-409
    • /
    • 2012
  • The classical electromagnetically-induced transparency(EIT)-like switching in metamaterial was experimentally and theoretically demonstrated in the microwave-frequency region. The metamaterial unit cell consists of two identical split-ring resonators, which are arranged on both sides of a dielectric substrate with asymmetry. It is found that the classical EIT-like switching can be achieved by changing the polarization of the incident electromagnetic wave. The results of this study are promising for practical applications.

Imaging with terahertz electromagnetic pulses (테라헤르츠 전자기파 펄스의 변조를 이용한 이미징의 해상도 연구)

  • Oh, Seung-Jae;Kang, Chul;Son, Ju-Hyuk
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.1
    • /
    • pp.46-50
    • /
    • 2004
  • Images were acquired by the modulation of terahertz electromagnetic signals and compared by modulation frequencies. For the real-time acquisition of images a fast scanning method has been adopted utilizing a galvanometer. The acquired time domain waveforms were transformed into frequency domain data by fast Fourier transformations (FFT). We chose some frequency components to compare the resolution of images. The beam profiles at the focal position were measured by a knife-edge technique. Beam diameter was shown to decrease as the frequency increased. By scanning one- and two-dimensional samples a significant image enhancement was observed with the frequency increment. A nondesouctive imaging system using ㎔ electromagnetic pulses was also demonstrated.