• Title/Summary/Keyword: Electromagnetic noise

Search Result 1,147, Processing Time 0.034 seconds

Design of X-Band SOM for Doppler Radar (도플러 레이더를 위한 X-Band SOM 설계)

  • Jeong, Sun-Hwa;Hwang, Hee-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.12
    • /
    • pp.1167-1172
    • /
    • 2013
  • This paper presents a X-band doppler radar with high conversion gain using a self-oscillating-mixer(SOM) that oscillation and frequency mixing is realized at the same time. To improve phase noise of the SOM oscillator, a ${\lambda}/2$ slotted square patch resonator(SSPR) was proposed, which shows high Q-factor of 175.4 and the 50 % reduced circuit area compared to the conventional resonator. To implement the low power system, low biasing voltage of 1.7 V was supplied. To enhance the conversion gain of the SOM, bias circuit is configured near the pinch-off region of transistor, and the conversion gain was optimized. The output power of the proposed SOM was -3.16 dBm at 10.65 GHz. A high conversion gain of 9.48 dB was obtained whereas DC Power consumption is relatively low about 7.65 mW. The phase noise is -90.91 dBc/Hz at 100 kHz offset. The figure-of-merit(FOM) of the proposed SOM was measured as -181.8 dBc/Hz, which is supplier to other SOMs by more than about 7 dB.

MTJ Performance Analysis of Hybrid DS/SFH Spread-Spectrum System using MSK or QPSK Modulation over Rayleigh Fading Channel (레이리 페이딩 채널상에서 MSK 혹은 QPSK 변조 방식의 하이브리드 DS/SFH 확산 스펙트럼 시스템의 다중톤 재밍 성능 분석)

  • Ryu, Heung-Gyoon;Chung, Byung-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.5
    • /
    • pp.492-499
    • /
    • 2002
  • Performance analysis and comparison of the hybrid DS-SFH spread-spectrum (SS) system using coherent MSK and QPSK modulation techniques over Rayleigh fading channel are considered in the presence of MTJ(multi-tone jamming). To analyze the BER performance of the hybrid systems with or without the Rake receiver, signal-to-noise plus interference ratio is derived as a function of the average signal-to-noise ratio, the jammer-to-signal ratio and other system parameters. Numerical results show that the performance difference between the two modulation schemes, MSK and QPSK, is negligible for low JSR, while it becomes significant with the increase of JSR. In multi-path Rayleigh fading channel without Rake receiver, the performances of the two modulation schemes are slightly improved as the DS spreading gain is increased when the total SS bandwidth is fixed. In particular, there is an optimum DS spreading gain for large JSR, in which a minimum BER is achieved, while only DS spreading gives the best performance for small JSR. For hybrid systems with Rake receiver, it is shown that the hybrid system of the MSK modulation scheme provides better anti-jamming performance and larger performance improvement with the increase of multi-path resolution capability of Rake receiver than that of QPSK modulation for all conditions.

Human Walking Detection and Background Noise Classification by Deep Neural Networks for Doppler Radars (사람 걸음 탐지 및 배경잡음 분류 처리를 위한 도플러 레이다용 딥뉴럴네트워크)

  • Kwon, Jihoon;Ha, Seoung-Jae;Kwak, Nojun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.7
    • /
    • pp.550-559
    • /
    • 2018
  • The effectiveness of deep neural networks (DNNs) for detection and classification of micro-Doppler signals generated by human walking and background noise sources is investigated. Previous research included a complex process for extracting meaningful features that directly affect classifier performance, and this feature extraction is based on experiences and statistical analysis. However, because a DNN gradually reconstructs and generates features through a process of passing layers in a network, the preprocess for feature extraction is not required. Therefore, binary classifiers and multiclass classifiers were designed and analyzed in which multilayer perceptrons (MLPs) and DNNs were applied, and the effectiveness of DNNs for recognizing micro-Doppler signals was demonstrated. Experimental results showed that, in the case of MLPs, the classification accuracies of the binary classifier and the multiclass classifier were 90.3% and 86.1%, respectively, for the test dataset. In the case of DNNs, the classification accuracies of the binary classifier and the multiclass classifier were 97.3% and 96.1%, respectively, for the test dataset.

Doppler Radar System for Long Range Detection of Respiration and Heart Rate (원거리에서 측정 가능한 호흡 및 심박 수 측정을 위한 도플러 레이더 시스템)

  • Lee, Jee-Hoon;Kim, Ki-Beom;Park, Seong-Ook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.4
    • /
    • pp.418-425
    • /
    • 2014
  • This paper presents a Ku-Band Doppler Radar System to measure respiration and heart rate. It was measured by using simultaneous radar and ECG(Electrocardiogram). Arctangent demodulation without dc offset compensation can be applied to transmitted I/Q(In-phase & Quadrature-phase) signal in order to improve the RMSE(Root Mean Square Error) about 50 %. The power leaked to receiving antenna from the transmitting antenna is always generated because of continuously opening the transceiver of CW(Continuous Wave) Doppler radar. As the output power increase, leakage power has an effect on the SNR(Signal-to-Noise Ratio) of the system. Therefore, in this paper, leakage cancellation technique that adds the signal having the opposite phase of the leakage power to the leakage power was implemented in order to minimize the decline of receiver sensitivity. By applying the leakage cancellation techniques described above, it is possible to measure the heart rate and respiration of the human at a distance of up to 35 m. the heart rate of the measured data at a distance of 35 m accords with the heart rate extracted from the ECG data.

Broadband LTCC Receiver Module for Fixed Communication in 40 GHz Band (40 GHz 대역 고정통신용 광대역 LTCC 수신기 모듈)

  • Kim Bong-Su;Kim Kwang-Seon;Eun Ki-Chan;Byun Woo-Jin;Song Myung-Sun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.10 s.101
    • /
    • pp.1050-1058
    • /
    • 2005
  • This paper presents how to design and implement a very compact, cost effective and broad band receiver module for IEEE 802.16 FWA(Fixed Wireless Access) in the 40 GHz band. The presented receiver module is fabricated in a multi-layer LTCC(Low Temperature Cofired Ceramic) technology with cavity process to achieve excellent electrical performances. The receiver consists of two MMICs, low noise amplifier and sub-harmonic mixer, an embedded image rejection filter and an IF amplifier. CB-CPW, stripline, several bond wires and various transitions to connect each element are optimally designed to keep transmission loss low and module compact in size. The LTCC is composed of 6 layers of Dupont DP-943 with relative permittivity of 7.1. The thickness of each layer is 100 um. The implemented module is $20{\times}7.5{\times}1.5\;mm^3$ in size and shows an overall noise figure of 4.8 dB, an overall down conversion gain of 19.83 dB, input P1 dB of -22.8 dBm and image rejection value of 36.6 dBc. Furthermore, experimental results demonstrate that the receiver module is suitable for detection of Digital TV signal transmitted after up-conversion of $560\~590\;MHz$ band to 40 GHz.

TEM 도파관을 이용한 전자파 장해 측정 연구 및 표준화 동향

  • 권종화
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.1
    • /
    • pp.51-62
    • /
    • 2002
  • EMI/EMS 측정을 위해서는 주변 전자파 잡음(background noise)이 낮은 야외시험장(Open Area Test Site)이 가장 바람직하나, 근래 전자(전기 기기 사용의 증가와 방송.무선통신 시스템의 다양화로 인한 인공잡음(artificial noise)의 증대로 조건에 부합된 부지 선정이 어렵고, 설치 비용이 매우 크며 날씨 변화에 따라 시험 계획이 변경 될 수도 있는 단점이 있다. 전자파 분-무반사실(Semi Anechoic Chamber)은 대부분의 환경 잡음을 감쇠시키므로 야외시험장처럼 장소의 구애를 받지 않아 도시나 혹은 제품 생산지 가까이에 설치 운용이 가능하다. 그러나 큰 설치 공간과 많은 시설 유지 비용을 필요로 하며, 저주파 대역에서는 반사에 의한 공진을 완전히 제거할 수 없어 성능이 떨어진다. 또한, 최근 컴퓨터 CPU의 동작주파수가 급속하게 높아지고 PCS, IMT-2000 등과 같은 이동전화의 사용주파수도 계속해서 높아짐에 다라 미연방통신위원회(Federal Communication Commission)에서는 5㎓까지의 복사 방출 시험을 요구하고 있다. IEC 61000-4-3 복사 내성 시험규격도 휴대폰 주파수인 2㎓까지 확장되었으며 IMT-2000, Bluetooth 등 새로운 이동통신서비스가 속속 개발됨에 따라 18㎓ 까지 시험 주파수가 확장되는 추세이다. 그러나, 현재 국내 각 연구실에서 보유하고 있는 야외시험장이나 전자파 반-무반사실의 경우 1㎓이상에서의 시험이 곤란하여 수 ㎓주파수대역에서 시험이 가능한 복사 및 내성시험 시설이 필요하게 되었다. 이러한 문제점들을 해결하기 위해 고안된 대용 측정 시설 중 대표적인 것이 TEM 셀이나 GTEM셀과 같은 TEM 도파관(waveguide) 형태의 장비들이다. 이들은 본래 EMS 측정을 위한 장비이지만 협소한 공간이나 외부와의 전자파 간섭의 우려가 없고, 설치가 비교적 자유로워 여러 연구기관에서 도파관 원리를 이용한 측정 방식을 연구(개발하여 범용적인 전자파 적합성 측정 장비로서 활용하고 있다. 야외시험장과 무반사실 등이 안테나에 의한 피시험기기 주변 공간에서의 1점 측정으로 인해 시험 시간이 많아 소요되는 공통적인 단점이 있는 반면, TEM 도파관에 의한 측정은 일단 피시험기기의 모델링 정보만 얻어지면 계산에 의해 EMI 측정을 바로 할 수 있다. <표 1>에서 현재 상용화되어 사용되고 있는 TEM/GTEM 셀, 야외 시험장 및 전자파 무반사실에 대해 EMI 측정과 관련된 몇 가지 사안에 대해 비교하였다. 본 문서에서는 야외시험장이나 전자파 반-무반사실 등과 같은 기존 EMI/EMS 측정 시설의 단점을 보완하고, 광대역 특성을 갖는 대용 측정 시설로서의 TEM 도파관에 대해 소개하고 야외시험장 결과와의 상관관계 알고리즘 및 표준화 동향에 대해 기술하였다. 2절에서는 대표적인 TEM 도파관 구조의 측정 시설인 TEM 셀과 GTEM 셀의 전기적.구조적 특징에 대해 간단히 기술하고, 3절에서는 TEM 셀과 GTEM 셀에서이 측정결과를 이용하여 야외 시험장 결과를 얻어내는 상관관계 알고리즘에 대해 기술하였다. 4절에서는 IEC/CISPR와 TC77에서의 표준화 활동을 중심으로 현재 진행중인 TEM 도파관 관련 표준화 동향과 내용에 대해 기술하고자 한다.

Design of a Broadband Receiving Active Dipole Antenna Using an Equivalent Model (등가 모델을 이용한 광대역 수신용 능동 다이폴 안테나 설계)

  • Lee, Cheol-Soo;Pack, Jeong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.1
    • /
    • pp.23-32
    • /
    • 2008
  • In the VHF range, active antennas are widely used for wideband applications due to their small size. Active antenna consists of antenna elements and amplifiers, which are directly connected to each other. Gain and noise-figure characteristics are very important for good sensitivity performance, because it is located at the front end of a receiving system. In this study, we developed an active dipole antenna with 5:1 bandwidth(100${\sim}$500 MHz), which consists of a dipole antenna and a P-HEMT amplifier. To obtain required performances, the antenna and the amplifier should be designed simultaneously. In order for that, we introduced an equivalent port concept to model the 1-port dipole antenna as an equivalent 2-port system. Using the proposed equivalent port, the performance of the active dipole antenna was simulated by the ADS. In order to measure the gain and noise-figure characteristics of the antenna, we utilized the same concept of the two-port equivalent impedance model. The measurement results for typical gain, NF and VSWR in the required frequency band were 8dBi, 9dB and 1.7:1, respectively. The radiation patterns at the principal planes were same as the typical radiation pattern of a dipole antenna. By comparing the simulation results with measured ones, it is confirmed that the proposed methods works well.

Spectral Analysis Method to Eliminate Spurious in FMICW HRR Millimeter-Wave Seeker (주파수 변조 단속 지속파를 이용하는 고해상도 밀리미터파 탐색기의 스퓨리어스 제거를 위한 스펙트럼 분석 기법)

  • Yang, Hee-Seong;Chun, Joo-Hwan;Song, Sung-Chan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.1
    • /
    • pp.85-95
    • /
    • 2012
  • In this thesis, we develop a spectral analysis scheme to eliminate the spurious peaks generated in HRR Millimeterwave Seeker based on FMICW system. In contrast to FMCW system, FMICW system generates spurious peaks in the spectrum of its IF signal, caused by the periodic discontinuity of the signal. These peaks make the accuracy of the system depend on the previously estimated range if a band pass filter is utilized to eliminate them and noise floor go to high level if random interrupted sequence is utilized and in case of using staggering process, we must transmit several waveforms to obtain overlapped information. Using the spectral analysis one of the schemes such as IAA(Iterative Adaptive Approach) and SPICE(SemiParametric Iterative Covariance-based Estimation method) which were introduced recently, the spurious peaks can be eliminated effectively. In order to utilize IAA and SPICE, since we must distinguish between reliable data and unreliable data and only use reliable data, STFT(Short Time Fourier Transform) is applied to the distinguishment process.

Novel Extraction Method for Unknown Chip PDN Using De-Embedding Technique (De-Embedding 기술을 이용한 IC 내부의 전원분배망 추출에 관한 연구)

  • Kim, Jongmin;Lee, In-Woo;Kim, Sungjun;Kim, So-Young;Nah, Wansoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.6
    • /
    • pp.633-643
    • /
    • 2013
  • GDS format files, as well as layout of the chip are noticeably needed so as to analyze the PDN (Power Delivery Network) inside of IC; however, commercial IC in the market has not supported design information which is layout of IC. Within this, in terms of IC having on-chip PDN, characteristic of inside PDN of the chip is a core parameter to predict generated noise from power/ground planes. Consequently, there is a need to scrutinize extraction method for unknown PDN of the chip in this paper. To extract PDN of the chip without IC circuit information, the de-embedding test vehicle is fabricated based on IEC62014-3. Further more, the extracted inside PDN of chip from de-embedding technique adopts the Co-simulation model which composes PCB, QFN (Quad-FlatNo-leads) Package, and Chip for the PDN, applied Co-simulation model well corresponds with impedance from measured S-parameters up to 4 GHz at common measured and simulated points.

Design of 24-GHz 1Tx 2Rx FMCW Transceiver (24 GHz 1Tx 2Rx FMCW 송수신기 설계)

  • Kim, Tae-Hyun;Kwon, Oh-Yun;Kim, Jun-Seong;Park, Jae-Hyun;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.10
    • /
    • pp.758-765
    • /
    • 2018
  • This paper presents a 24-GHz frequency-modulated continuous wave(FMCW) radar transceiver with two Rx and one Tx channels in 65-nm complementary metal-oxide-semiconductor(CMOS) process and implemented it on a radar system using the developed transceiver chip. The transceiver chip includes a $14{\times}$ frequency multiplier, low-noise amplifier, down-conversion mixer, and power amplifier(PA). The transmitter achieves >10 dBm output power from 23.8 to 24.36 GHz and the phase noise is -97.3 GHz/Hz at a 1-MHz offset. The receiver achieves 25.2 dB conversion gain and output $P_{1dB}$ of -31.7 dBm. The transceiver consumes 295 mW of power and occupies an area of $1.63{\times}1.6mm^2$. The radar system is fabricated on a low-loss Duroid printed circuit board(PCB) stacked on the low-cost FR4 PCBs. The chip and antenna are placed on the Duroid PCB with interconnects and bias, gain blocks and FMCW signal-generating circuitry are mounted on the FR4 PCB. The transmit antenna is a $4{\times}4$ patch array with 14.76 dBi gain and receiving antennas are two $4{\times}2$ patch antennas with a gain of 11.77 dBi. The operation of the radar is evaluated and confirmed by detecting the range and azimuthal angle of the corner reflectors.