• Title/Summary/Keyword: Electromagnetic loads

Search Result 56, Processing Time 0.023 seconds

A Study on the Out-of-Step Detection Algorithm using Time Variation of Complex Power-Part II : Out-of-Step Detection Algorithm using a Trajectory of Complex Power (복소전력의 변화율을 이용한 동기탈조 검출 알고리즘에 관한 연구-Part II: 복소전력의 궤적 변화를 이용한 동기탈조 검출 알고리즘)

  • Kim Chul-Hwan;Heo Jeong-Yong;Kwon O-Sang
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.5
    • /
    • pp.217-225
    • /
    • 2005
  • In a power system, an out-of-step condition causes a variety of risk such as serious damage to system elements, tripping of loads and generators, mal-operation of relays, etc. Therefore, it is very important to detect the out-of-step condition and take a proper measure. Several out-of-step detection methods have been employed in relays until now. Most common method used for an out-of-step detection is based on the transition time through the blocking impedance area in R-X diagram. Also, the R-R dot out-of-step relay, the out-of-step prediction method and the adaptive out-of-step relay using the equal area criterion (EAC) and Global Positioning Satellite (GPS) technology have been developed. This paper presents the out-of-step detection algorithm using the time variation of the complex power. The complex power is calculated and the mechanical power of the generator is estimated by using the electrical power, and then the out-of-step detection algorithm which is based on the complex power and the estimated mechanical power, is presented. This algorithm may detect the instant when the generator angle passes the Unstable Equilibrium Point (UEP). The proposed out-of-step algorithm is verified and tested by using Alternative Transient Program/Electromagnetic Transient Program (ATP/EMTP) MODELS.

A Consideration on 3-Phase Non-Loop, Multiple-Point Ground Method in 22.9[kV] CNCV Underground Cable Systems (22.9[kV] CNCV케이블 지중배전계통의 3상 비일괄 동심증성선 다중접지방식에 대한 이론적고찰)

  • Jeon, Myung-Su;Song, Joong-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.2
    • /
    • pp.85-93
    • /
    • 2008
  • In 22.9[kV]-y distribution systems, underground cables are provided with 3-wire loop multiple-point ground in which each coaxial-neutral line of the distribution cable lines(A, B, C phases) is 3-wire common grounded at every connecting section. In the underground cable distribution systems, circulating current flows in the coaxial-neutral lines and its magnitude amounts to about $40{\sim}50[%]$ load currents, even though loads are balanced. This paper presents a new ground method to overcome such a problem and a comprehensive analysis in tows of current capacity of power cables, induced voltage of cable sheath, and electromagnetic interference voltage from power cable lines.

A Study on the Out-of-Step Detection Algorithm using Time Variation of Complex Power-Part II : Out-of-Step Detection Algorithm using a trajectory of Complex power (복소전력의 변화율을 이용한 동기탈조 검출 알고리즘에 관한 연구-Part II: 복소전력의 궤적 변화를 이용한 동기탈조 검출 알고리즘)

  • Kwon, O.S.;Kim, C.H.;Park, N.O.;Chai, Y.M.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.313-315
    • /
    • 2005
  • In a power system, an out-of-step condition causes a variety of risk such as serious damage to system elements, tripping of loads and generators, mal-operation of relays, etc. Therefore, it is very important to detect the out-of-step condition and take a proper measure. Several out-of-step detection methods have been employed in relays until now Mo,;t common method used for an out-of-step detection is based on the transition time through the blocking impedance area in R-X diagram. Also, the R-R dot out-of- step relay, the out-of-step prediction method and the adaptive out-of-step relay using the equal area criterion (EAC) and Global Positioning Satellite (GPS) technology have been developed. This paper presents the out-of-step detection algorithm using the time variation of the complex power. The complex power is calculated and the mechanical power of the generator is estimated by using the electrical power, and then the out-of-step detection algorithm, which is based on the complex Power and the estimated mechanical power, is presented. This algorithm, may detect the instant when the generator angle passes the Unstable Equilibrium Point (UEP). The proposed out-of-step algorithm is verified and tested by using Alternative Transient Program/Electromagnetic Transient Program (ATP/EMTP) MODELS.

  • PDF

A Universal Middleware-based Small Satellite Payload Power Module Design (유니버설미들웨어기반 소형위성 탑재체 전력모듈설계)

  • Lee, Hae-Jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.5
    • /
    • pp.487-494
    • /
    • 2019
  • A Small-Sat Power System Design and Development should be depend on space environment such as solar wind with Electromagnetic field by hurdle of techniques. It is surmount solution of trend that will unitize and converge with power module in these days. The level of modularize means that applying Universal Middleware for payload power module requirements. The scope of target system is a main power provider module and operational subunit that can be implemented with the final power module distribution loads to consume for continuous process. A Universal Middleware strengthen to build power module from satellite power system should be accuracy and consuming data. A Power Service Module and dynamic system drive interactive management between power distribution and consumer module by Range Control. Consequently, suggesting evaluation, unexpecting payload system power consumer that makes fine variable resources in the development design process and efficiency.

Evaluation of MWCNT Exposure and the Wear Characteristics of MWCNT-containing PC/ABS Composites (다중벽 탄소나노튜브를 함유한 PC/ABS 복합재의 마모 특성 및 다중벽 탄소나노튜브의 유출 평가)

  • Lee, Hyun-Woo;Kim, Kyung-Shik;Lee, Jae-Hyeok;Kim, Hyo-Sop;Kim, Jae-Ho;Oh, Dong-Hoon;Ryu, Sang-Hyo;Jang, Young-Chan;Kim, Jae-Hyun;Lee, Hak-Joo;Kim, Kwang-Seop
    • Tribology and Lubricants
    • /
    • v.30 no.5
    • /
    • pp.278-283
    • /
    • 2014
  • Carbon nanotubes (CNTs) are used in various composite materials to enhance electrical, thermal and mechanical properties of composite materials. In this study, we investigate the wear characteristics of polycarbonate/acrylonitrile-butadiene-styrene (PC/ABS) blends containing multi-walled carbon nanotubes (MWCNTs). PC/ABS blends are commonly used in many industrial applications such as cellular phones and display cases and MWCNTs have been added to the PC/ABS blends to improve their electromagnetic interference shielding (EMS). We performed wear tests on PC/ABS blends containing MWCNTs under reciprocating linear sliding conditions with chrome steel balls as a counterpart material. The normal loads were 10, 30, 50, 70, 100 N, the sliding speed was 10 mm/s, the stroke length was 15 mm, and the tests lasted 900 s. The MWCNTs included in the PC/ABS blends lower the wear volume and friction coefficient of the composites. We analyzed the wear debris collected from the composites during the tests in terms of the MWCNT concentration using inductively coupled plasma optical emission spectroscopy. The results show that the quantity of MWCNTs in the debris is proportional to the concentration of MWCNTs in the composite, indicating that the exposure of the MWCNTs to environments by wear could be increased with their concentration in the composite.

Changes in Electrophysiological Activation Due to Different Levels of Cognitive Load (인지부하의 정도에 따른 뇌신경생리학적 변화)

  • Kwon, Joo-Hee;Kim, Euijin;Kim, Jeonghui;Im, Chang-Hwan;Kim, Do-Won
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.52-60
    • /
    • 2022
  • Purpose: For now, cognitive load is assessed based on survey-based methods, which can be difficult to track the amount of cognitive load in real-time. In this study, we investigated the difference in electrophysiological activation due to different levels of cognitive load not only at sensor-level but also at source-level using electroencephalogram that might be potentially used for quantitative cognitive load evaluation. Materials and Methods: In this study, ten healthy subjects (mean age 24.3 ± 2.1, three female) participated the experiment. All participants performed 4 sessions of n-back task in different difficulties: 0-, 1-, 2-, and 3-back during electroencephalogram recording. For sensor-level analysis, we calculated the event-related potential and event-related spectral perturbation while low resolution brain electromagnetic tomography (LORETA) to estimate the source activation. Each result was compared between different workload conditions using statistical analysis. Results: Statistical results revealed that the accuracy of the task performance was significantly different between different cognitive loads (p = 0.018). The post-hoc analysis confirmed that the accuracy of the 3-back task was significantly decreased compared to 1-back condition (p = 0.018), but not with 2-back condition (p = 0.180). ERP results showed that P300 target amplitude between 1-back and 3-back had a marginal difference in Cz (p = 0.059) and Pz(p = 0.093). A significant inhibition in Cz high-beta activation (p = 0.017) and decrease in source activation of right parahippocampal gyrus was found in 3-back condition compared to 1-back condition (p < 0.05). Conclusion: In this study, we compared the sensor- and source-level differences in electroencephalogram between different levels of cognitive load, that were found to be in line with the previous reports related to cognitive load evaluation. We expect that the outcome of the current study can be used as a feature to establish a quantitative cognitive load assessment system.