• Title/Summary/Keyword: Electromagnetic induction technology

Search Result 76, Processing Time 0.027 seconds

Research on the Model, Structure and Characteristics of a New Vibration Generator

  • Zhang, Qing-Xin;Yu, Li;Lin, Tong;Gao, Yun-Hong;Wang, Lu-Ping
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.6
    • /
    • pp.335-340
    • /
    • 2016
  • The vibrational energy is prevalent in the natural environment, which is studied by energy researchers as a new energy resource in recent years. Vibration generation utilizes electromagnetic induction technology, piezoelectric technology and certain characteristics of smart materials to convert mechanical energy into electrical energy. In this paper, a new method of using MSMA (magnetic shape memory alloy) to generate electricity is proposed and the principle of generating electricity is demonstrated. Martensitic variants and magnetic domain characteristics of MSMA are analyzed. Combining with Gibbs free energy function thermal theory, the mathematics model of MSMA vibration generator is established. The basic structure of MSMA vibration generator is designed and simulation is done to analyze that the effects of generator output voltage when the input amplitude and frequency of vibration stress change. The simulation experiments verify the feasibility of using MSMA to make the micro vibration generators and the correctness of the mathematical model, which lays a good foundation for the further research and application of MSMA vibration generator.

A Study on Transmission Efficiency of Wireless Power Induction and Resonant Charging Methodologies (무선 유도 및 공진 충전방식의 전송효율 연구)

  • Lho, Young Hwan
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.747-750
    • /
    • 2019
  • Wearable devices have become practically indispensable to daily life and helped people track and manage fitness, health, and medical functions etc. As these wearable devices become smaller and more comfortable for the user, the demand for longer run time and charging ways presents new challenges for the power management engineer. Wireless power transfer (WPT) is the technology that forces the power to transmit electromagnetic field to an electrical load through an air gap without interconnecting wires. This technology is widely used for the applications from low power smart phone to high power electric railroad and main electrical grid. There are two kinds of WPT methods: Inductive coupling and magnetic resonant coupling. The model using magnetic resonant coupling method is designed for a resonant frequency of 13.45 MHz. In this study, the hardware implementations of these two coupling methods are carried out, and the efficiencies are compared.

A Study on the Design of Logistics Transportation System using Magnetic Levitation (자기부상 물류이송시스템 설계에 관한 연구)

  • Choi, Dae-Gyu;Cho, Jae-Hoon;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.129-135
    • /
    • 2014
  • In the paper, we propose a design method for the logistics transportation system using magnetic levitation that has a good characteristics without mechanical friction, noise and dust. The proposed transportation system consists of a levitation control system and a propulsion control system. Magnetic levitation system is an electromagnetic suspension system in which electromagnet generates magnetic attractive force and the attractive force pulls the rail. We design a PID controller for the current control of electromagnets. We use linear induction motors for propulsion of the proposed logistics transportation system and adapt the space vector PWM method for the propulsion control system. The proposed transportation system using magnetic levitation is verified performances through levitation and propulsion experiments.

Power Transmission Mechanism and Data Communication of the Dosimeter using Contactless Powerless Transmission (선량계의 무선전력 전송 메카니즘과 데이터 통신 시스템 구현)

  • Lee, Seung-Min;Chung, Sung-In;Lee, Heung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.814-819
    • /
    • 2010
  • This study proposes the antenna circuit design for the transmitting wireless power, the development of the RF non-contact type Dosimeter. That is, the study designed the optimization and numerical analysis of the antenna circuit for the antenna design of 13.56MHz over the frequency bands for transmitting wireless power. We studied the needed items in the existing RF type Dosimeter with battery to implement the wireless power non-contact Dosimeter within the battery. We compared to the real measurement value as calculating the value of the inductance and capacitance through the numerical analysis for the antenna LC resonance using the theory of the electromagnetic induction method. This method to drive low power is designed to simplify the circuit and to improve the efficiency of the rectifier. We convince our research contributes not only to understand the simplified circuit and miniaturization, but also to help the design and application technology of the wireless power transmit system which is received power supply with wireless.

Detection of Levitated Ring using Photo Sensor and Construct of an Education System (광센서를 이용한 점핑링의 위치검출과 교육용 시스템 제작)

  • Park, Seong-Wook
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.365-370
    • /
    • 2002
  • The jumping ring apparatus described in this study is used to demonstrate and educate the effects of electromagnetic induction. Placing an aluminum ring over the core and switching on AC source causes the ring to jump in the air due to induced currents in the ring producing a magnetic field opposed to that produced in the core. This force is a function of flux density, ac current of ring and levitated height of the ring. Using photo sensor arrays, detect the ring position and represent the position of the ring to analog voltage for an education performance. This paper presents modelling of the jumping ring system and shows how does control signal generate in order to follow desired position.

Critical Short Circuit Ratio Analysis on DFIG Wind Farm with Vector Power Control and Synchronized Control

  • Hong, Min;Xin, Huanhai;Liu, Weidong;Xu, Qian;Zheng, Taiying;Gan, Deqiang
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.320-328
    • /
    • 2016
  • The introduction of renewable energy sources into the AC grid can change and weaken the strength of the grid, which will in turn affect the stability and robustness of the doubly-fed induction generator (DFIG) wind farm. When integrated with weak grids, the DFIG wind turbine with vector power control often suffers from poor performance and robustness, while the DFIG wind turbine with synchronized control provides better stability. This paper investigates the critical short circuit ratios of DFIG wind turbine with vector power control and synchronized control, to analyze the stability boundary of the DFIG wind turbine. Frequency domain methods based on sensitivity and complementary sensitivity of transfer matrix are used to investigate the stability boundary conditions. The critical capacity of DFIG wind farm with conventional vector power control at a certain point of common coupling (PCC) is obtained and is further increased by employing synchronized control properly. The stability boundary is validated by electromagnetic transient simulation of an offshore wind farm connected to a real regional grid.

Analysis of Distance between ATS and ATP Antenna for Normal Operation in Combined On-board Signal System

  • Kim, Minseok;Kim, Minkyu;Kim, Doogyum;Lee, Jongwoo
    • International Journal of Railway
    • /
    • v.5 no.2
    • /
    • pp.77-83
    • /
    • 2012
  • Railroad signaling systems are to control intervals and routes of trains. There are ATS, ATP, ATO and ATC system. Trains are operated in the section which is met on the signaling system because various signaling systems are used in Korea. Hence, trains are not operated in the section which is used in the other signaling system. To solve this problem, recently combined on-board system has been developed. The combined on-board system designed by doubling the ATS, ATP and ATC system to ensure the safety of system. The inductance of antenna is change and in return the resonance frequency of antenna is varied by the electromagnetic induction. Therefore, the information signal is not received exactly in the combined on-board system and in return accidents between trains occur. In this paper, electric model of the combined on-board system for considering the ATS and ATP antenna is presented. Moreover, the mutual inductance including the distance between the ATS and ATP antenna is calculated. As a result of the frequency response of the antennas, the mutual inductance met on operation range of resonance frequency is defined.

Voltage disturbance detection method for HTS tape using electromagnetically coupled coils

  • Song, Seunghyun;Lee, Jiho;Lee, Woo Seung;Jin, Hongwoo;Hwang, Young Jin;Ko, Tae Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.1
    • /
    • pp.23-26
    • /
    • 2014
  • This paper represents the detection method of voltage disturbance for high temperature superconducting (HTS) tape using electromagnetically coupled coils. In order to detect the voltage as the superconductor transits from the superconducting state to the normal conduction state, voltage taps are widely used to get the voltage signal. And voltage taps are connected to data acquisition device via signal wires. However this new suggested method can detect the superconducting transition voltage without signal wires between voltage taps and data acquisition device by using electromagnetically coupled coils. This system consists of two electromagnetically coupled coils, the first coil to detect and transmit the voltage of HTS tape and the second coil to pick up the transmitted voltage from the first coil. By using this new suggested method, we can build the 'separated voltage-detection system'. HTS tape and first coil are located under liquid nitrogen vessel and the second coil is located under room temperature condition. In this paper, experiments are performed to verify the feasibility of the proposed method. As the result of the experiment, the separated voltage-detection system using electromagnetically coupled coils can successfully observe superconducting-normal transition of HTS tapes.

Electrical Characteristics of Antenna for Electrodeless Fluorescent Lamp Using the Electromagnetic Simulation (무전극 형광램프용 안테나 설계를 위한 전기적 특성 시뮬레이션)

  • Her, In-Sung;Kim, Kwang-Soo;Choi, Yong-Sung;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05b
    • /
    • pp.61-64
    • /
    • 2004
  • Recently, the RF inductive discharge or inductively coupled plasma (ICP) continues to attract growing attention as an effective plasma source in many industrial applications, the best known of which are plasma processing and lighting technology. To the point of lighting sources, the electrodeless fluorescent lamps utilizing an inductively coupled plasma (ICP) have been objects of interest and research during the last decades, mainly because of their potential for extremely long life, high lamp efficacies, rapid power switching response. The electrodeless fluorescent lamp that is dealt with in this work comprises a bulb filled with rare gas and amalgam of vaporizable metal and has a coil provided with a winding around the ferrite. Current through a coil produces a magnetic field in the discharge space. The changing magnetic flux then produces an azimuthal electric field E around the coil, according to Faraday's laws of magnetic induction.

  • PDF

Electrical Characteristics of Antenna for Electrodeless Fluorescent Lamp Using the Electromagnetic Simulation (무전극 형광램프용 안테나 설계를 위한 전기적 특성 시뮬레이션)

  • Her, In-Sung;Kim, Kwqang-Soo;Choi, Yong-Sung;Lee, Chong-Chan;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.285-288
    • /
    • 2004
  • Recently, the RF inductive discharge or inductively coupled plasma(ICP) continues to attract growing attention as an effective plasma source in many industrial applications, the best known of which are plasma processing and lighting technology. To the point of lighting sources, the electrodeless fluorescent lamps utilizing an inductively coupled plasma(ICP) have been objects of interest and research during the last decades, mainly because of their potential for extremely long life, high lamp efficacies, rapid power switching response. The electrodeless fluorescent lamp that is dealt with in this work comprises a bulb filled with rare gas and amalgam of vaporizable metal and has a coil provided with a winding around the ferrite. Current through a coil produces a magnetic field in the discharge space The changing magnetic flux then produces an azimuthal electric field E around the coil, according to Faraday's laws of magnetic induction.

  • PDF