• 제목/요약/키워드: Electromagnetic generator

검색결과 295건 처리시간 0.039초

충전선로를 이용한 Damped Sinusoidal 전자기펄스 발생장치 (A Damped Sinusoidal Electromagnetic Pulse Generator using a Charged Line)

  • 류지헌
    • 한국군사과학기술학회지
    • /
    • 제9권2호
    • /
    • pp.136-142
    • /
    • 2006
  • A damped sinusoidal electromagnetic pulse generator was designed, fabricated and tested. The pulse generator consisted of an oscillator(a spark gap switch and an initially charged low impedance line) and a high impedance antenna. This generator was capable of producing damped sinusoidal pulses at closure of the spark gap switch. A Marx generator was employed to supply the Pulse generator with high voltage pulses. While the pulse generator was provided with the high voltage pulses of 200kV from the Marx generator, its output power was maximized by controlling the pressure of the gas contained in the spark gap switch. The output power of the damped sinusoidal electromagnetic pulse oscillator was 1.3GW and the amplitude of electric field radiated from the pulse generator was 4kV/m at the range of 25m.

Influence of Frequency on Electromagnetic Field of Super High-Speed Permanent Magnet Generator

  • Qiu, Hongbo;Wei, Yanqi;Wang, Wei;Tang, Bingxia;Zhao, Xifang;Yang, Cunxiang
    • Journal of Power Electronics
    • /
    • 제19권4호
    • /
    • pp.980-988
    • /
    • 2019
  • When compared with traditional power frequency generators, the frequency of a super high-speed permanent magnet generator (SHSPMG) is a lot higher. In order to study the influence of frequency on the electromagnetic field of SHSPMGs, a 60000rpm, 117kW SHSPMG was taken as a research object. The two-dimensional finite element model of the generator was established, and the two-dimensional transient field of the generator was simulated. In addition, a test platform of the generator was set up and tested. The reliability of the simulation was verified by comparing the experiment data with that of the simulation. Then the generator electromagnetic field under different frequencies was studied, and the influence mechanism of frequency on the generator electromagnetic field was revealed. The generator loss, voltage regulation rate, torque and torque ripple were analyzed under the rated active power load and different frequencies. The influences of frequency on the eddy current density, loss, voltage regulation rate and torque ripple of the generator were obtained. These conclusions can provide some reference for the design and optimization of SHSPMGs.

3D electromagnetic design and electrical characteristics analysis of a 10-MW-class high-temperature superconducting synchronous generator for wind power

  • Kim, J.H.;Park, S.I.;Le, T.D.;Kim, H.M.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제16권2호
    • /
    • pp.47-53
    • /
    • 2014
  • In this paper, the general electromagnetic design process of a 10-MW-class high-temperature superconducting (HTS) synchronous generator that is intended to be utilized for large scale offshore wind generator is discussed. This paper presents three-dimensional (3D) electromagnetic design proposal and electrical characteristic analysis results of a 10-MW-class HTS synchronous generator for wind power. For more detailed design by reducing the errors of a two-dimensional (2D) design owing to leakage flux in air-gap, we redesign and analyze the 2D conceptual electromagnetic design model of the HTS synchronous generator using 3D finite element analysis (FEA) software. Then electrical characteristics which include the no-load and full-load voltage of generator, harmonic contents of these two load conditions, voltage regulation and losses of generator are analyzed by commercial 3D FEA software.

500MW 급 대형 발전기 권선단부의 전자기력과 동특성 해석 (Analysis of Vibration and Electromagnetic Forces on a Generator End-winding for 500 MW Fossil Power Plant)

  • 김철홍;주영호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.826-831
    • /
    • 2001
  • Electromagnetic forces generate vibrations in the end-winding of large generators. A finite element analysis using a commercial S/W is performed to calculate electromagnetic force of end-winding in two pole generator for 500 MW fossil power plant. Also, this paper presents analytical and experimental modal analysis results of generator end- winding. Using validated FE model, 3D electromagnetic model which computes the forces on the end-winding is coupled with a 3D mechanical model which calculates the dynamic displacement and stress under electromagnetic forces. These results will be used to evaluate reliability of end-winding and applied to update model.

  • PDF

Electromagnetic Structural Design Analysis and Performance Improvement of AFPM Generator for Small Wind Turbine

  • Jung, Tae-Uk;Cho, Jun-Seok
    • Journal of Magnetics
    • /
    • 제16권4호
    • /
    • pp.374-378
    • /
    • 2011
  • Axial Field Permanent Magnet (AFPM) generators are widely applied for the small wind turbine because of the higher power density per unit weight than that of the conventional radial field generator. It is caused by the disc shaped rotor and the stator structures. The generally used AFPM generator, AFER-NS generator, is composed of the two side's external rotors and non-slotted stator without stator core. However, the output voltage and the output power are limited by the large reluctance by the long air-gap flux paths. In this paper, the design study of AFIR-S generator having double side's slotted stator core is accomplished to improve the output generation characteristics. The electromagnetic design analysis and the design improvement of the suggested AFIR-S generator are studied. Firstly, the electromagnetic design analysis was done to increase the power density. Secondly, the design optimizations of the rotor pole-arc ratio of permanent magnet are accomplished to increase the output power and to reduce the cogging torque. Finally, the output performances of AFER-NS and AFIR-S generator are compared with each other. For this study, 3D FEA is applied for the design analysis because of three dimensional electromagnetic structures.

전자기력에 의한 발전기 고정자 코어의 진동 해석 (Vibration Analysis of a Generator-Stator Core Under Electromagnetic Excitation)

  • 김철홍;주영호;박종포
    • 소음진동
    • /
    • 제9권4호
    • /
    • pp.747-753
    • /
    • 1999
  • This paper presents results of vibration analysis of a generator-stator core for 500 MW fossil power plant. A finite element analysis using a commercial S/W is performed to estimate alternating electromagnetic forces, mainly of 120 Hz in 60 Hz machines, acting on the core, and then to calculate forced response of the core. Results are compared with design requirements.

  • PDF

신재생 에너지 적용을 위한 고효율 영구자석 동기 전동/발전기의 해석 및 설계 (Analysis and Design of high-efficiency Permanent Magnet Synchronous Motor/Generator for Renewable Energy Application)

  • 유대준;김일중
    • 전기학회논문지
    • /
    • 제60권5호
    • /
    • pp.955-964
    • /
    • 2011
  • In renewable energy system such as flywheel energy storage system, wind power and solar power, the motor/generator is the important key for offering the electric energy to the electric loads. For example, the heavy and large flywheel is rotated by electromagnetic torque of pemanent magnet synchronous motor (PMSM) and, in case of a breakdown of electric current, the PMSM used as generator supplies electric energy for the various electric utilities using mechanical rotation energy of the flywheel. Thus, design of a motor/generator should be performed in effort to reduce cogging torque and electromagnetic loss for high efficiency. In our paper, a slotless permanent magnet synchronous motor/generator (SPMSM/G) with output power 15kW at the rotor speed 18000rpm is designed from electromagnetic analysis and dynamic performance analysis. In analytical approach, design parameters such as back electro-motive force (back EMF), inductance and electromagnetic torque are derived from analytical method which is one of the electromagnetic analysis method. And using the design parameters, this paper deal with system design considering the driving characteristics and electric load in required power. Finally, the analytical results are verified by the experiment and finite element method (FEM).

비상발전기용 전자클러치의 자계해석 (Analysis of the Electromagnetic Clutch for Emergency Power Generator)

  • 전문호;김창업
    • 조명전기설비학회논문지
    • /
    • 제25권4호
    • /
    • pp.111-116
    • /
    • 2011
  • This paper deals with the electromagnetic clutch which stop the generator at emergency by using the engine power of generator. The electromagnetic field was analyzed using Flux-2d program with different conditions : voltage, air gap, coil locations. As a result, the maximum magnetic flux density of electromagnetic clutch occurred between the coil and wheel : 0.27[T], 0.41[T] at 12[V], 24[V]. The maximum flux density was at the center location of the coil.

대형 화력 발전용 발전기 권선단부의 전자기력에 의한 진동 해석 (Vibration Analysis of the End-winding of Large Generator for Fossil Power Plant under Electromagnetic Excitation)

  • 김철홍;주영호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.350-355
    • /
    • 2003
  • This paper presents results of vibration analysis of a end-winding of large generator for fossil power plant. A finite element analysis using a commercial S/W is performed to calculate alternating electromagnetic forces, mainly of 120㎐ in 60㎐ machines, acting on the end-winding, and then to calculate forced response of the end-winding under electromagnetic forces. Also, this paper presents analytical and experimental modal analysis results of generator end-winding to validate FE model. We calculated forced response of end-winding on 120㎐, double rotating frequency. These results will be used to evaluate structural reliability of end-winding and applied to update model.

  • PDF

EMP 방호성능 시험용 통합형 E1 펄스 발생장치 분석 및 성능 개선 (Analysis and Performance Improvement of Integrated E1 Pulse Generator for EMP Protection Performance Test)

  • 김영진;강호재;정영경;윤동기;박용배
    • 한국전자파학회논문지
    • /
    • 제29권6호
    • /
    • pp.415-423
    • /
    • 2018
  • 본 논문에서는 HEMP(High-altitude Electromagnetic Pulse)와 같은 외부전자파 환경에 노출된 EMP 방호시설에 연결된 전송선로에 유기된 HEMP 위협에 대한 전도성 방호 성능 평가를 위한 E1 펄스에 대해 연구한다. 기존 E1 펄스 발생장치는 Marx Generator 고전압 승압 방식을 사용하지만, 본 연구에서는 광대역 출력전압(30~350 kV) 가변이 용이한 Tesla Transformer 방식을 사용한다. E1 펄스 발생장치의 구성 요소인 제어기, 전원장치, 고전압 승압장치, 펄스성형장치도 각각 분석한다. Tesla Transformer를 이용한 E1 펄스는 시뮬레이션을 통해 성능을 예측하고, 실제 개발된 장비를 이용하여 결과를 검증한다.