• Title/Summary/Keyword: Electromagnetic beams

Search Result 50, Processing Time 0.025 seconds

Analysis on Frequency Sharing between LEO Satellite Network and FS System in Space-to-Earth Direction (저궤도 위성망과 FS 시스템의 주파수 공유 방안 연구)

  • Gam, Hye-Mi;Oh, Dae-Sub;Ahn, Do-Seob
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.12
    • /
    • pp.1279-1286
    • /
    • 2009
  • This paper addresses the analysis of the interference produced between the LEO(Low Earth Orbit) satellite constellation and FS(Fixed Service) system operating in the same frequency and area. At first, we calculates the interference of FS system from the LEO satellite constellation depending on the number of LEO satellite antenna beams. Simulation results show that the amount of interference that was calculated from each region. This result can be used to define the carrier level for protecting FS system from total interference by LEO satellite constellation. In the second scenario, we calculates the interference of LEO satellite system earth station by the FS link depending on radius of protection area. The presented results can be used to design FS systems minimizing interference to earth station.

System Performance Analysis for Multi-Band SweepSAR Operating Mode (다중대역 SweepSAR 운용 모드의 시스템 성능 분석)

  • Yoon, Seong-Sik;Lee, Jae-Wook;Lee, Taek-kyung;Ryu, Sang-Burm;Lee, Hyeon-Cheol;Kang, Eun-Su;Lee, Sang-Gyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.3
    • /
    • pp.186-194
    • /
    • 2017
  • In this paper, we analyze the main performance of satellite's Synthetic Aperture Radar system for high resolution and wide swath. We have used the radiation pattern of reflector antenna with array feed and comparison between the conventional ScanSAR mode and SweepSAR mode has been carried out. The SweepSAR mode is a high-resolution wide-swath mode that transmits beams over a wide range and receives echo signals through sequential beamforming based on SCORE(SCan On REceive). In this paper, we analyzed the operating principle and characteristics of satellite's SweepSAR mode and simulate system performances. In addition, in order to increase the utilization of image, performances analysis for multiple frequency bands(C-band, X-band) has been considered.

Near-Field Receiving Measurement of Active Phased Array Antenna for Full Digital Radar Application (완전 디지털 레이다에 적용 가능한 능동위상배열안테나 근접전계 수신 시험)

  • Chae, Heeduck;Lee, Jae-Min;Kim, Young-Wan;Kim, HanSaeng;Jin, Hyoung Seog;Park, Jongkuk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.7
    • /
    • pp.625-634
    • /
    • 2016
  • A full digital receiving active phased array antenna generates final receiving beams by digital beam forming of received digital signals in element-level that makes difficult to use typical near-field measurement method. Thus in this paper, a modified near-field measurement method which is suitable for full digital receiving active phased array antenna is proposed. Also the measured results of receiving beam pattern and G/T using developed L-band full digital receiving active phased array antenna are shown for the verification of proposed method.

Subarray Structure Optimization Algorithm for Active Phased Array Antenna Using Recursive Element Exchanging Method (재귀적 소자 교환 방식을 이용한 능동위상배열안테나 부배열 구조 최적화 알고리즘)

  • Chae, Heeduck;Joo, Joung Myoung;Yu, Je-Woo;Park, Jongkuk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.8
    • /
    • pp.665-675
    • /
    • 2016
  • With the development of active phased array radar technology in recent years, active phased array antennas, which digitally combine signals received from subarray units using dozens of digital receiver, have been developed. The beam characteristics are greatly affected by the shape of the subarray structure as well as the weight of subarray in digital beamforming. So in this paper, the method to generate subarray structures by using recursive element exchanging method and the method to optimize subarray structures that can minimize sidelobes of operating beams are proposed. Additionally it presents the result to find the optimized subarray structure to minimize the maximum sidelobe of monopulse beam and pencil multi-beam respectively or simultaneously which are commonly used for digital beamforming by applying the algorithm propsed in this paper.

A Study on the Electrical Design of a Multi-Beam Large Antenna for S-band Satellite Payload (S-대역 위성 탑재용 다중 빔 대형 안테나의 전기적 설계 연구)

  • Yun, So-Heyun;Uhm, Man-Suk;Yom, In-Bok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.11
    • /
    • pp.1240-1247
    • /
    • 2010
  • This paper describes the study on the electrical design of a multi-beam large antenna for a satellite payload. This satellite antenna provides the universal communication and broadcasting services to personal portable terminals over the Korean Peninsula. The structure of the hybrid antenna fed by a feed array is proper to provide multi-beams. The amplitude and phase of each feed element should be optimized for a required beam and they can be obtained by GO (Geometrical Optics) and PO(Physical Optics) method. The number of feed elements are also optimized to meet the specification of EIRP(Effective Isotropically Radiated Power). The optimally designed antenna with the limited reflector size and minimum number of feed elements is shown in this paper.

Design of Series-Fed Microstrip Patch Array Antennas for Monopulse Radar Sensor Applications (모노 펄스 레이더 센서용 직렬 급전 마이크로스트립 패치 배열 안테나 설계)

  • Park, Eui-Joon;Jung, Ik-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.11
    • /
    • pp.1248-1258
    • /
    • 2010
  • In this paper, a method for simultaneously realizing the sum and difference patterns which are required in the monopulse radar sensor systems, is presented by using single taper array antenna with rectangular microstrip patches. The widths of patches are first determined by the voltage weights which are synthesized for the fundamental array factor patterns to be applied to the monopulse operation by using the sidelobe levels(SLLs) control technique. As the bi-directionally series-fed technique is applied and the lengths of connecting lines between patches are appropriately adjusted, the single array generates two phase-shifted beams which activates out-of-phase and in-phase ports of a $180^{\circ}$ hybrid coupler to synthesize the sum and difference patterns. The simulated results on the configuration designed at 9.5 GHz are compared with measured results showing the validity of the proposed method.

Design of the Aperture Coupled Microstrip Antenna with Tilted Beam (빔 틸팅 특성을 갖는 개구 급전 마이크로스트립 안테나 설계 연구)

  • 하재권;박동철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.5
    • /
    • pp.705-712
    • /
    • 2001
  • In this paper, a new type of aperture coupled microstrip patch antenna with tilted-beam based on the principal of the dipole yagi antenna is proposed and investigated experimentally. Its configuration is composed by 3 types of patches; reflector, driver, and director. Tilted beam patterns are effected by many parameters as those of dipole yagi antenna; sizes of the patches, gaps between the patches, characteristics of the substrates, feeding method and etc. Therefore, in this paper, the effects of varying design parameters of this antenna are studied with a goal of enhancing the gain and tilting the beams. A microtrip patch antenna with tilted beam based on performance trade-offs is designed and fabricated. Measured and simulated results for return loss and radiation patterns are presented. It has 45$^{\circ}$ tilted beam and very close to simulation beam pattern at resonant frequency, 2.58 GHz.

  • PDF

Collision Avoidance Beamforming for Mitigating Inter-cell Interference in Cooperative Wireless Communication Systems (순방향 셀 간 간섭 억제를 위한 충돌 회피 빔성형 기법)

  • Mun, Cheol;Jung, Chang-Kyoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.10
    • /
    • pp.1173-1179
    • /
    • 2012
  • In this paper, collision avoidance beamforming(CA-BF) technology is proposed to mitigate inter-cell interference in cooperative wireless communications system with limited feedback. Each acess terminal(AT) selects both the best BF weight vector for a serving base transceiver station(BTS) and the most interfering BF weight vectors of interfering BTSs within a cluster, and sends it back to a cluster scheduler. At the cluster scheduler, a set of transmit BF weights of BTSs and the corresponding scheduled ATs are jointly determined to avoid collision among beams formed by BTSs within a cluster, which enhances system throughput by mitigating inter-cell interference. It is shown that the proposed CA-BF outperforms existing non-coordinated BF schemes in terms of the average system throughput.

The Design of a Broadband E-plane H Sectoral Horn Phased Array Antenna Using Mutual Coupling (상호 결합을 이용한 광대역 E-면 H 섹터 혼 위상 배열 안테나 설계)

  • Lee, Cheol-Soo;Pack, Jeong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.6 s.121
    • /
    • pp.620-628
    • /
    • 2007
  • An H-sector horn antenna has a constant beam coverage characteristic and it can be useful for application to a wide band phased array antenna system. In this paper, we designed a broadband E-plane H-sector horn phased-array antenna, which has a 3:1 bandwidth and ${\pm}60^{\circ}$ beam steering capability. An H-sector hem antenna was designed to have $30{\sim}50^{\circ}$ half-power beam width in the principal H-plane. The active reflection coefficient including mutual coupling was calculated using a waveguide simulator, and the active reflection characteristic was improved by mutual coupling over wide frequency range. Using these results, an $8{\times}1$ H-sector phased array antenna was fabricated. The measurement results for the half-power beam width in the principal H-plane and the active reflection coefficient showed a good agreement with the simulation results. The peak-value pattern in the steered radiation beams also agreed well with the active element pattern. The measured active reflection coefficients within the beam steering range are mostly less than 0.3 over the 3:1 frequency range.

Design and Fabrication of an L-Band Digital TR Module for Radar (레이다용 L대역 디지털 송수신모듈 설계 및 제작)

  • Lim, Jae-Hwan;Park, Se-Jun;Jun, Sang-Mi;Jin, Hyung-Suk;Kim, Kwan-Sung;Kim, Tae-Hun;Kim, Jae-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.11
    • /
    • pp.857-867
    • /
    • 2018
  • Active array radar is evolving into digital active array radar. Digital active array radar has many advantages for making several simultaneous radar beams from the digital receive data of each element. A digital-type transceiver(TR) module is suitable for this goal in radar. In this work, the design results of an L-band digital TR module are presented to verify the possibility of fabrication for a digital active array antenna. This L-band digital TR module consists of a gallium-nitride-type HPA to achieve a more than 350-W peak output power and one-chip transceivers that include a digital waveform generator and analog digital converter. The receiving gain was 47 dB, the noise figure was less than 2 dB, and the final output type of the four channel receiving paths was one optic signal.