• 제목/요약/키워드: Electromagnetic Transients

검색결과 59건 처리시간 0.018초

위상면궤적을 이용한 전력계통의 고장판별에 관한 연구 (A Study on the Classification of Arcing Faults in Power Systems using Phase Plane Trajectory Method)

  • 박남옥;신영철;안상필;여상민;김철환
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제51권5호
    • /
    • pp.209-216
    • /
    • 2002
  • Recently, there is greater demand for stable supply of electric power as higher level of our living. It becomes the important problem that the cause of fault in power system is found out in early stage, if once it occurs. In this respect, accurate classification of arcing faults in power systems is vitally important. This paper presents a new classification method for arcing faults in power system. To obtain data of various faults including high impedance fault(HIF) and low impedance fault(LIF), HIF model with the ZnO arrester is adopted and implemented within the overall transmission system model based on the electromagnetic transients program(EMTP). Results of phase plane trajectory if Clarke modal transformation using postfault current and voltage are utilized to classify types of arcing faults. The performance of the proposed method is tested on a typical 154 kV korean transmission system under various fault conditions. As can be seen from results, phase plane trajectory of postfault current should be combined with that of o component from Clarke modal transformation to give reliability of clear fault classification. Thus the proposed method can classify arcing faults including LIFs and HIFs accurately in power systems.

Fundamental Frequency Estimation in Power Systems Using Complex Prony Analysis

  • Nam, Soon-Ryul;Lee, Dong-Gyu;Kang, Sang-Hee;Ahn, Seon-Ju;Choi, Joon-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권2호
    • /
    • pp.154-160
    • /
    • 2011
  • A new algorithm for estimating the fundamental frequency of power system signals is presented. The proposed algorithm consists of two stages: orthogonal decomposition and a complex Prony analysis. First, the input signal is decomposed into two orthogonal components using cosine and sine filters, and a variable window is adapted to enhance the performance of eliminating harmonics. Then a complex Prony analysis that is proposed in this paper is used to estimate the fundamental frequency by approximating the cosine-filtered and sine-filtered signals simultaneously. To evaluate the performance of the algorithm, amplitude modulation and harmonic tests were performed using simulated test signals. The performance of the algorithm was also assessed for dynamic conditions on a single-machine power system. The Electromagnetic Transients Program was used to generate voltage signals for a load increase and single phase-to-ground faults. The performance evaluation showed that the proposed algorithm accurately estimated the fundamental frequency of power system signals in the presence of amplitude modulation and harmonics.

Applicability of Messenger Wire for Purpose of Lightning Protection

  • Seo, Hun Chul;Han, Joon;Choi, Sun Kyu;Lee, Byung Sung;Rhee, Sang Bong;Kim, Chul Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권1호
    • /
    • pp.167-174
    • /
    • 2016
  • The Korean distribution line currently consists of overhead ground wires (OHGW), overhead distribution lines, neutral wires (NW), and messenger wires (MW). The MW is installed under the NW. The lightning protection system in Korea is focused on OHGW and lightning arrester and the MW are not considered. Therefore, this paper proposes the applicability of MW for purpose of lightning protection. For this, we analyzed the effects of lightning overvoltage according to the existence of OHGW and MW and the grounding conditions of the MW in the Korean distribution system. The grounding conditions of the MW that we took into consideration were the common or separate grounding of the MW and NW. The analysis based on the equivalent circuit of the distribution pole at each condition was performed. The distribution lines and lightning were modeled using the Electromagnetic Transients Program (EMTP). For each of the installation conditions of the OHGW and MW, the various lightning conditions were simulated and analyzed for both direct and indirect lightning. The simulation results showed that, if the OHGW was not installed in the Korean distribution system, the lightning overvoltage could be reduced by the common grounding of the MW and NW.

A Study on SFCL with IGBT Based DC Circuit Breaker in Electric Power Grid

  • Bae, SunHo;Kim, Hongrae;Park, Jung-Wook;Lee, Soo Hyoung
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권5호
    • /
    • pp.1805-1811
    • /
    • 2017
  • Recently, DC systems are considered as efficient electric power systems for renewable energy based clean power generators. This discloses several critical issues that are required to be considered before the installation of the DC systems. First of all, voltage/current switching stress, which is aggravated by large fault current, might damage DC circuit breakers. This problem can be simply solved by applying a superconducting fault current limiter (SFCL) as proposed in this study. It allows a simple use of insulated-gate bipolar transistors (IGBTs) as a DC circuit breaker. To evaluate the proposed resistive type SFCL application to the DC circuit breaker, a DC distribution system is composed of the practical line impedances from the real distribution system in Do-gok area, Korea. Also, to reflect the distributed generation (DG) effects, several DC-to-DC converters are applied. The locations and sizes of the DGs are optimally selected according to the results of previous studies on DG optimization. The performance of the resistive type SFCL applied DC circuit breaker is verified by a time-domain simulation based case study using the power systems computer aided design/electromagnetic transients including DC (PSCAD/ EMTDC(R)).

A Novel Algorithm for Fault Classification in Transmission Lines Using a Combined Adaptive Network and Fuzzy Inference System

  • Yeo, Sang-Min;Kim, Chun-Hwan
    • KIEE International Transactions on Power Engineering
    • /
    • 제3A권4호
    • /
    • pp.191-197
    • /
    • 2003
  • Accurate detection and classification of faults on transmission lines is vitally important. In this respect, many different types of faults occur, such as inter alia low impedance faults (LIF) and high impedance faults (HIF). The latter in particular pose difficulties for the commonly employed conventional overcurrent and distance relays, and if undetected, can cause damage to expensive equipment, threaten life and cause fire hazards. Although HIFs are far less common than LIFs, it is imperative that any protection device should be able to satisfactorily deal with both HIFs and LIFs. Because of the randomness and asymmetric characteristics of HIFs, their modeling is difficult and numerous papers relating to various HIF models have been published. In this paper, the model of HIFs in transmission lines is accomplished using the characteristics of a ZnO arrester, which is then implemented within the overall transmission system model based on the electromagnetic transients program (EMTP). This paper proposes an algorithm for fault detection and classification for both LIFs and HIFs using Adaptive Network-based Fuzzy Inference System (ANFIS). The inputs into ANFIS are current signals only based on Root-Mean-Square (RMS) values of 3-phase currents and zero sequence current. The performance of the proposed algorithm is tested on a typical 154 kV Korean transmission line system under various fault conditions. Test results demonstrate that the ANFIS can detect and classify faults including LIFs and HIFs accurately within half a cycle.

Power System Harmonic Estimation Based on Park Transform

  • Chen, Ya;Ji, Tianyao;Li, Mengshi;Wu, Qinghua;Wang, Xuejian
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권3호
    • /
    • pp.560-574
    • /
    • 2016
  • This paper presents a novel method for power system harmonic estimation based on the Park transform. The proposed method firstly extends the signal to a group of three-phase signals in a-b-c coordinate. Then, a linear fitting based method is adopted to estimate the fundamental frequency. Afterwards, the Park transform is utilized to convert the three-phase signals from a-b-c coordinate to d-q-0 coordinate. Finally, the amplitude and phase of a harmonic component of interest can be calculated using the d-axis and q-axis components obtained. Simulation studies have been conducted using matrix laboratory (MATLAB) and power system computer aided design/electromagnetic transients including direct current (PSCAD/EMTDC). Simulation studies in MATLAB have considered three scenarios, i.e., no-frequency-deviation scenario, frequency-deviation scenario and the scenario in the presence of inter-harminics. The results have demonstrated that the proposed method achieves very high accuracy in frequency, phase and amplitude estimation under noisy conditions, and suffers little influence of the inter-harmonics. Moreover, comparison studies have proved that the proposed method is superior to FFT and Interpolated FFT with the Hanning Window (IpFFTHW). Finally, a popular case in PSCAD/EMTDC has been employed to further verify the effectiveness of the proposed method.

전자기 과도현상 해석을 위한 다단자 회로망 등가표현법 (Equivalent Model of a Multiport Network for Electromagnetic Transients Studies)

  • 홍준희;조경래;정병태;김성희;안복신
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 D
    • /
    • pp.878-879
    • /
    • 1997
  • 본 논문에서는 전자기 과도현상 해석을 위한 다단자 회로망 등가표현법을 제안한다. 이 방법은 M개의 경계모선을 가진 축약대상 계통의 과도특성을 시간 영역에서 분석하며 이를 이용해 M 개의 노톤형 이산시간 등가 어드미턴스 필터꼴의 등가시스템을 구현한다. 이 때 각각의 등가 어드미턴스 필터 모델들은 해당 경계모선에서의 구동점 어드미턴스 특성을 나타내는 부분과 나머지 M-1 개의 등가 종속전류원으로 구성된다. 또한 이 등가 종속전류원들은 각 경계모선을 연결하는 분포정수 회로요소들로 인한 시지연 효과를 명확하게 반영할 수 있는 구조를 갖는다. 완성된 M 단자쌍 모델을 해석대상 시스템에 대한 이산시간 표현형과 쉽게 결합하여 원하는 전자기 과도현상 모의해석을 수행할 수 있다. 축약대상 시스템과 2 개의 경계모선을 통해 연결된 시험계통을 대상으로 모선지락 사고시 과전압과 스위칭 써지를 모의해석한 결과 제안하는 방법이 타당함을 확인할 수 있었다.

  • PDF

멀티레벨 인버터 구동 고압유도전동기에시 발생하는 과도과전압 저감을 위한 LCR필터의 효과분석 (Analysis on the Effect of LCR Filter to Mitigate Transient Overvoltage on the High Voltage Induction Motor Fed by Multi Level Inverter)

  • 김재철;권영목
    • 조명전기설비학회논문지
    • /
    • 제20권3호
    • /
    • pp.45-52
    • /
    • 2006
  • 본 논문에서는 H-bridge cascaded 7-level 인버터로 구동되는 고압 유도전동기에서 발생하는 과도과전압 저감을 위한 LCR 필터의 효과를 분석하였다. 인버터에서 발생하는 스위칭 서지 전압은 유도전동기 입력단자에서 과도과전압을 발생시킨다. 이 과도과전압은 고압 유도 전동기의 고정자 권선에 심각한 전압스트레스를 주어 전동기 절연사고를 발생시키는 주요원인이다. 과도과전압의 영향은 저압유도 전동기 보다 고압 유도전동기에서 더욱더 심각하게 발생한다. 이러한 과도과전압을 저감하기 위한 방안으로 LCR 필터를 선택하였으며, 필터를 인버터 출력단자에 연결하여 과도과전압 스트레스와 링잉을 저감한 것을 전동기 단자에서 전압파형과 고조파 스펙트럼을 통하여 증명하였다. 시뮬레이션은 전자계과도해석 프로그램인 EMTP(Electromagnetic Transients Program)을 사용하였다.

분로리액터 개폐 과전압 해석을 위한 EMTP 모델링 (Electromagnetic Transient Program Modeling for Analysis of Switching Over-Voltage on Shunt Reactor)

  • 오승열;전인영;한기선;강지원
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제6권4호
    • /
    • pp.393-397
    • /
    • 2020
  • 무효전력 보상설비인 분로리액터는 전력계통의 부하 패턴에 따라서 하루에도 수 회 정도 차단기에 의해 운전되거나 정지된다. 분로리액터개폐 시 몇 가지 요인에 의해 발생하는 과전압은 차단기의 절연 성능을 저하시키며, 계통을 구성하는 전력기기에 심각한 전압 스트레스를 유발한다. 분로리액터 개폐 과정에서 발생하는 과도현상을 측정하는 것은 계통을 모의하여 차단기 성능을 검증하는 시험소 수준에서는 가능하나, 실제 계통 운전 중에 발생하는 과도현상을 측정하는 것은 여러 가지 제약으로 어려움이 있다. 따라서 본 논문에서는 실 계통에서 지상 소전류 차단과정에서 가혹한 과도회복전압(TRV: Transient Recovery Voltage)을 유발하는 재발호(reignition)나 전류재단(current chopping) 현상에 대한 해석을 위해 전자계과도해석프로그램(EMTP: Electro-magnetic Transients Program)을 활용한 모델링 과정과 이를 토대로 분로리액터 개폐 과정에서 차단기의 고장을 유발하는 주된 현상에 대해 해석하고자 한다.