• Title/Summary/Keyword: Electromagnetic Transient Simulation

Search Result 75, Processing Time 0.031 seconds

Model development of electrified railroad supply system for Electromagnetic Transient Analysis (순시치 해석용 전철급전계통 모델개발)

  • 윤재영;최흥관;김종율;위상봉
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.4
    • /
    • pp.253-259
    • /
    • 2002
  • This paper presents the first simulation model using EMTDC program to analyze the electrified train voltage distribution characteristics in ac auto-transformer fed railroads. In general, all of the electrified train supply system has the characteristics that the train supply line is a naturally non-symmetrical and unbalanced system. Also, it is needed to model the Scott transformer which invert the balanced 3-phase quantity into 2-phase. Therefore, the general simulation methodology using previous simplified equivalent circuit or RMS based program can't obtain the accurate results to reflect the real-time operation because these methodology is basically assumed on completely 3-phase balanced system. To overcome these defects, in this paper, the EMTDC simulation model to analysis the completely electrified railroad system with Scott transformer and AC auto-transformer is presented. Also, the correctness of EMTDC modeling is confirmed by the old basic concepts and we think that this EMTDC model has the future powerful capability for application of railroad system analysis.

A simulation of Lightning Performance of the 154 kV Transmission Line with the Surge Arrester Installation (154 kV 송전선로에 피뢰기 설치시 내뢰성 향상효과 모의)

  • Shim, Eung-Bo;Woo, Jung-Wook
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1642-1644
    • /
    • 1997
  • The simulation study of lightning faults reducing effects by the installation of surge arresters on the 154 kV transmission line is stated here. For the purpose of detailed simulation of arcing horn, a flashover model with dynamic characteristics of arcing horn gap was represented as a non-linear inductance which is controlled by EMTP/TACS(Electromagnetic Transient Program/fransient Analysis of Control Systems) switches. The back flashover inducing current was increased from 50 kA to 88 kA by the installation of surge arresters on the transmission line which has one ground wire and 20 ohms of tower footing resistances. The great advantage of surge arrester installation on one circuit of the double circuit transmission line is to prevent the simultaneous back flashover up to 190 kA.

  • PDF

Advanced Small-Signal Model of Multi-Terminal Modular Multilevel Converters for Power Systems Based on Dynamic Phasors

  • Hu, Pan;Chen, Hongkun;Chen, Lei;Zhu, Xiaohang;Wang, Xuechun
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.467-481
    • /
    • 2018
  • Modular multilevel converter (MMC)-based high-voltage direct current (HVDC) presents attractive technical advantages and contributes to enhanced system operation and reduced oscillation damping in dynamic MMC-HVDC systems. We propose an advanced small-signal multi-terminal MMC-HVDC based on dynamic phasors and state space for power system stability analysis to enhance computational accuracy and reduce simulation time. In accordance with active and passive network control strategies for multi-terminal MMC-HVDC, the matchable small-signal stability models containing high harmonics and dynamics of internal variables are conducted, and a related theoretical derivation is carried out. The proposed advanced small-signal model is then compared with electromagnetic-transient and traditional small-signal state-space models by adopting a typical multi-terminal MMC-HVDC network with offshore wind generation. Simulation indicates that the advanced small-signal model can successfully follow the electromechanical transient response with small errors and can predict the damped oscillations. The validity and applicability of the proposed model are effectively confirmed.

Electromagnetic Strip Stabilization Control in a Continuous Galvanizing Line using Mixture of Gaussian Model Tuned Fractional PID Controller (비정수 차수를 갖는 비례적분미분제어법과 가우시안 혼합모델을 이용한 연속아연도금라인에서의 전자기 제진제어 기술)

  • Koo, Bae-Young;Won, Sang-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.8
    • /
    • pp.718-722
    • /
    • 2015
  • This paper proposes a fractional-order PID (Proportional-Integral-Derivative) control used electromagnetic strip stabilization controller in a continuous galvanizing line. Compared to a conventional PID controller, a fractional-order PID controller has integration-fractional-order and derivation-fractional-order as additional control parameters. Thanks to increased control parameters, more precise controller adjustment is available. In addition, accurate transfer function of a real system generally has a fractional-order form. Therefore, it is more adequate to use a fractional-order PID controller than a conventional PID controller for a real world system. Finite element models of a $1200{\times}2000{\times}0.8mm$ strip, which were extracted using a commercial software ANSYS were used as simulation plants, and Gaussian mixture models were used to find optimized control parameters that can reduce the strip vibrations to the lowest amplitude. Simulation results show that a fractional-order PID controller significantly reduces strip vibration and transient response time than a conventional PID controller.

Prediction and Measurement of Induction Phenomena in the 765 kV Double Circuit Transmission Line operated with two voltage grades (765 kV 송전선로에서의 이종 전압등급 병행 운전시의 유도현상 예측 및 실측 결과)

  • Kwak, J.S.;Kang, Y.W.;Shim, E.B.;Jeon, M.R.;Woo, J.W.;Bang, H.G.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.208-211
    • /
    • 2003
  • The western route of KEPCO's 765 kV transmission line has been tentatively operating as 345 kV voltage before commercial operation. KEPCO decided to operate the 765 kV line for commercial operation after completing the test operation of 765 kV substation in 2002. In the process of energizing the line as 765 kV voltage, double circuit transmission line will be operated with two voltage grades of 765 kV and 345 kV. As the earthing switches are installed on both ends of the line, electrostatic induction voltage and electromagnetic induction current were calculated prior to the line energizing in order to confirm the ratings. The induced voltage and current are important for the maintenance of the parallel circuit. This paper presents the simulation results of electrical phenomena such as electrostatic induction voltage and electromagnetic induction current from the parallel line. The transmission line was modeled by EMTP (Electro-Magnetic Transient Program). The simulation results were compared with the measured results at the field.

  • PDF

Transient Characteristic Analysis of Damper in Superconducting Synchronous Generator by the Compensated 2D Analysis Model (보정된 2차원 해석모델에 의한 초전도 동기발전기의 댐퍼 과도특성 해석)

  • Chun, Yon-Do;Lee, Hyung-Woo;Lee, Ju;Hong, Jung-Pyo;Kwon, Young-Kil;Ryu, Kang-Sik
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.2
    • /
    • pp.93-101
    • /
    • 2000
  • This paper presents a novel method for the transient of eddy currents in the dampers of a super-conducting synchronous generator(SCG). The method proposes a 2-D corrected model which takes into account the influence of leakage fluxes of the field winding ends by increasing the effective air gap in order to consider the high precision of the analysis for the conventional 2-D model. The electromagnetic fields for the corrected model are analyzed by the time-stepping finite element method, thus the eddy currents in the dampers and electro-motive forces(EMF) in the stator windings are calculated. As the results, it is proved the presented method is comparatively accurate by comparing measured phase EMF values and the simulation ones, where about 6.4% error at the maximum value of EMF is occurred between them.

  • PDF

Analysis of the electrostatic induction voltage and electromagnetic induction current on the Parallel Circuit in 765kV Double Circuit Transmission Line (765kV 2회선 송전선로를 765kV 및 345kV로 병행운전시 유도현상 예측)

  • Woo, J.W.;Shim, E.B.;Kwak, J.S.;Jeon, M.R.;Kim, K.I.;Kim, T.O.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.169-171
    • /
    • 2002
  • The western route of KEPCO's 765kV transmission line has been tentatively operating as 345kV voltage before commercial operation. After finishing the test operation of 765kV substation in 2002. KEPCO decided to operate the 765kV line for commercial operation. During the applying of 765kV voltage to the transmission line, double circuit transmission line will be operated with two voltage grades of 765kV and 345kV. Because the earthing switch is installed on both end of transmission line, we had estimated the electrostatic induction voltage and electromagnetic induction current before the line energizing in order to confirm the ratings of earthing switch. The induced voltage and current is very important for the maintenance of parallel circuit. This paper describes the simulation study of electrical phenomena such as electrostatic induction voltage from the parallel line and electromagnetic induction current from the parallel circuit. The transmission line model was developed by EMTP (Electro-Magnetic Transient Program).

  • PDF

Adaptive Multi-Tap Equalization for Removing ICI Caused by Transmitter Power Transient in LTE Uplink System (LTE 상향 링크 시스템에서 송신기의 전력 과도 현상에 의해 발생하는 ICI를 제거하기 위한 적응적 멀티 탭 등화 기법)

  • Chae, Hyuk-Jin;Cho, Il-Nam;Kim, Dong-Ku
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.8
    • /
    • pp.701-713
    • /
    • 2009
  • This paper studies a method for reducing performance degradation due to losing sub-carrier orthogonality caused by power transient between physical channels in LTE uplink transmission. The pattern of inter-carrier interference(ICI) caused by power transient is different from what has been studied for doppler shift, in that its pattern occurs at front and rear sides of channels in each period of power transient. The reason of ICI's occurrence results from power difference between channels, power transient duration, multi-path channel delay spread, and numbers of sub-carrier. New criterion is proposed to find out number of taps of multi-tap equalizer enough to improve the ICI. The scheme is to determine the number of taps of multi-tap equalizer when a normalized interference or a normalized ICI is greater than a normalized noise. Simulation results show that the number of taps is flexibly adjusted according to SNR(Signal to Noise Ratio) of a received signal to improve Bit Error Rate(BER), while the complexity of the proposed scheme is reduced down to 88 percentage of the classical method.

Travelling Wave Technique for Close-Up Fault Protection (진행파를 이용한 근접사고 거리계전 방식)

  • Kim, Gon-Wook;Kang, Sang-Hee;Park, Jong-Keun;Kim, Il-Dong;Yun, Man-Cheol;Kwon, Wook-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.202-205
    • /
    • 1990
  • In this paper the development of new technique based on the travelling-wave information contained in the post fault voltage and current signals has been presented. To develop fault location methods which can cope with close-up fault and zero-inception angle problems, magnitude of the backward wave has been used. The technique developed can be incorporated in a generalized algorithm for application as a high speed distance scheme. In this way some of the problems and limitations associated with travelling wave schemes are avoided. Verification of the relay operating principles is presented through digital computer numerical simulation using an electromagnetic transient program(EMTP) in conjunction with simulation of the proposed algorithms.

  • PDF

A Decision Scheme for Optimal Insertion Resistance in Superconducting Fault Current Limiter for Reduction of the Transformer Inrush Current (여자돌입전류 제한용 초전도한류기의 최적투입저항 결점)

  • Seo, H.C.;Rhee, S.B.
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.37-39
    • /
    • 2008
  • This paper suggests a decision scheme for optimal insertion resistance in an Superconducting Fault Current Limiter (SFCL) application to reduce the transformer inrush current. This scheme and the SFCL model are implemented using Electromagnetic Transient Program (EMTP). We determine the optimal SFCL resistance by EMTP simulation, and this value is applied to model the SFCL by EMTP. The simulation results show the validity and effectiveness of the suggested scheme and the ability of a SFCL to reduce the inrush current.

  • PDF