• Title/Summary/Keyword: Electromagnetic Suspension System

Search Result 75, Processing Time 0.029 seconds

Dynamic interaction analysis of actively controlled maglev vehicles and guideway girders considering nonlinear electromagnetic forces

  • Min, Dong-Ju;Lee, Jun-Seok;Kim, Moon-Young
    • Coupled systems mechanics
    • /
    • v.1 no.1
    • /
    • pp.39-57
    • /
    • 2012
  • This study intends to explore dynamic interaction behaviors between actively controlled maglev vehicle and guideway girders by considering the nonlinear forms of electromagnetic force and current exactly. For this, governing equations for the maglev vehicle with ten degrees of freedom are derived by considering the nonlinear equation of electromagnetic force, surface irregularity, and the deflection of the guideway girder. Next, equations of motion of the guideway girder, based on the mode superposition method, are obtained by applying the UTM-01 control algorithm for electromagnetic suspension to make the maglev vehicle system stable. Finally, the numerical studies under various conditions are carried out to investigate the dynamic characteristics of the maglev system based on consideration of the linear and nonlinear electromagnetic forces. From numerical simulation, it is observed that the dynamic responses between nonlinear and linear analysis make little difference in the stable region. But unstable responses in nonlinear analysis under poor conditions can sometimes be obtained because the nominal air-gap is too small to control the maglev vehicle stably. However, it is demonstrated that this unstable phenomenon can be removed by making the nominal air-gap related to electromagnetic force larger. Consequently it is judged that the nonlinear analysis method considering the nonlinear equations of electromagnetic force and current can provide more realistic solutions than the linear analysis.

Design and Application of the Semi-Continuous Sliding Mode Control(Control of Electromagnetic Suspension Systems) (반-연속 슬라이딩 모드 제어기의 설계 및 적용(자기부상 시스템의 제어))

  • Lee, Kyu-Joon;Kim, Sang-Hwan;Kim, Jong-Shik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.8
    • /
    • pp.38-46
    • /
    • 2002
  • A new semi-continuous sliding mode control is proposed for electromagnetic suspension systems. The control input is derived from the reaching law and the Lyapunov stability criteria, which is composed of continuous terms and low switching term. It has a low switching gain and chattering fee characteristics. It is shown by the computer simulation that the proposed control has good tracking performance and robustness compared with the classical sliding mode control.

An Analytical Study on the Magnetic Levitation System Using a Halbach Magnet Array (Halbach 배열 영구자석을 이용한 자기 부상계의 해석에 관한 연구)

  • Moon, Seok-Jun;Yun, Dong-Won;Cho, Hung-Je;Park, Sung-Whan;Kim, Byung-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1077-1085
    • /
    • 2007
  • Typically, three types of levitation technologies are applied to magnetic levitation systems: electromagnetic suspension, electrodynamic suspension, and hybrid electromagnetic suspension. A Halbach array is a special arrangement of permanent magnets which augments the magnetic field on one side of the device while cancelling the field to near zero on the other side. The application of this Halbach array magnet to the electrodynamic suspension has been recently studied in order to increase the levitation capability. This paper is focused on an analytical method of the magnetic levitation system using Halbach array magnet. The suitability of the proposed method is verified with comparing to the finite element method. In addition, dynamic stability of the magnetic levitation system is discussed. From this study, it is confirmed that the proposed method provides a reasonable solution with less computation time compared to the finite element method and the magnetic levitation system using Halbach array magnet is stable dynamically.

Design Review for suspension system of magnetically levitated vehicle (자기부상차량 현가시스템 설계에 대한 고찰)

  • Lee, Nam-Jin;Yang, Bang-Sub;Kim, Chul-Guen
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.364-371
    • /
    • 2008
  • In general Maglev (magnetically levitated vehicle) has about 4 or 5 bogies per one vehicle to improve stability of electromagnetic suspension and 4 air-spring per one bogie are to be equipped to prevent form excessive yawing and pitching motion of bogie. 3 leveling valve per one vehcile will be applied to control the height of carbody. This kind of vehicle is on the design stage, and design review will be carried out before manufacture. The suspension system of Maglev consists of 16 of air-spring, auxiliray reservoir and orifice, 3 leveling valve, which are different composition comparative to conventional rolling stock. To improve operational reliability of vehicle, additional ventilation valve will be equipped with airspring. This kind of new design concept requires fundamental design review. In this study, suspension systems of Maglev will be built as mathematical model. Then designed suspension system will be reviewed in view of various points through proposed suspension simulation.

  • PDF

Comparison of PID and Feedback Linearization Control for Magnetic Levitation System (자기부상 시스템의 PID 제어와 Feedback Linearization 제어와의 성능비교)

  • 박종석;김동환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.263-263
    • /
    • 2000
  • Electromagnetic Suspension(EMS) System produces no noise, friction and heat through non-contacting operation Therefore, the applicable device using EMS system has a lot of attraction in case of the high-speed and non-contacting transmission EMS with nonlinear properties requires a precise airgap position control and stable kinematics characteristics under the disturbances, In this study, the nonlinear system was linearized by a Nonlinear Feedback Lineariztion(NFL) method. The NFL method requires that the modelling should be exact, and the state variables should be measured and a rapidly operating controller be necessary on account of a heavy data calculating In the experiments. the ideal control characteristics of the NFL was acquired through simulation at first. then the characteristics of the actual system were compared with those of simulation. In addition, the results by NFL were examined and analysed considering the characteristics of the PID control. The Control by NFL shows much stable control characteristics than the PID control. Whereas, the steady state errors occur for various disturbances. hence a robust control design is remained for a further study.

  • PDF

Performance Test and Safety Evaluation of EMS Type Urban Tranit Maglev System(I) (상전도자기부상식 도시형 자기부상열차의 주행성능시험 및 평가(I))

  • Jo, Heung-Je;Kim, In-Geun;Kim, Chun-Gyeong;Yu, Mun-Hwan;Lee, Jong-Min
    • 연구논문집
    • /
    • s.26
    • /
    • pp.5-14
    • /
    • 1996
  • Test results of electromagnetic suspension (EMS) type urban transit maglev system are reported. Electromagnetic levitation system is a transportation system taking advantage of the attraction of normal conducting electromagnets to support and guide the train in combination with the linear induction traction motors. Urban Transit Maglev (UTM) Which is being developed by the maglev team in KIMM and the Hyundai Precision Company since 1995 consists of three bogies. In the first year, two types of Bogies are developed. Bogie I uses an analog controller for levitation and guidance control and is driven by two linear induction motors (LIM) mounted on the right and left side of module. Bogie II uses a digital controller and is driven by one LIM mounted along the center line of the bogie. Test results reported in this paper are those obtained with Bogie II with a digital controller. Also included in this paper is a brief explanation of the electromagnetic suspension levitation system which is being developed by the maglev team in KIMM.

  • PDF

$H_{\infty}$ Controller Design for Electromagnetic Suspension System using LMIs (LMI를 이용한 자기부상 시스템의 $H_{\infty}$ 제어기 설계)

  • Jang, S.M.;Sung, S.Y.;Sung, H.K.;Kim, B.S.
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.280-283
    • /
    • 2000
  • In this paper, a fault tolerant control problem is considered for a class of nonlinear system formulated in a gain scheduling form with LMI-based H-inf control technique Key benefits of this proposed scheme are demonstrated in the simulation of an electromagnetic suspension system with actuator and/or sensor failures, and the method is compared with the convensional state-feedback and output-feedback controller. It is clearly observed that the proposed control scheme shows an improved output performance in comparision with convensional methods.

  • PDF

Vibration characteristics between levitation air-gap and switching system girders (상전도 흡인식 자기부상열차 분기기 주행시의 부상공극변동과 분기기 거더의 진동 특성)

  • Shin, Hyeon-Jae;Lee, Jong-Min;Choi, Jang-Young
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.824-829
    • /
    • 2011
  • EMS-type Maglev vehicle maintains constant levitation air-gap between electromagnet and guideway by using gap sensor. The other words, when Maglev vehicles levitating over the guideway, mass of the vehicle effects through 1st (electromagnetic air-gap control) and 2nd (air-spring) suspension to grider. Resonace between electromagnetic suspension and grider could be occurred, which causes instability and poor ridecomfort. This paper is to test the dymanic interaction between levitation air-gap and switching system grider that has less mass and high natural frequencies than other type of general girders.

  • PDF

Analysis of Dynamic Characteristics of Electromagnetic Suspension system with Lateral Displacement by FEM (FEM에의한 부상마그네트의 횡방향 편위를 고려한 자기부상시스템의 안내력변화 특성해석)

  • Im, Dal-Ho;Kwon, Byung-Il;Hong, Jung-Pyo;Im, Jee-Won
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.570-572
    • /
    • 1992
  • In this paper, an analysis of lift and lateral forces as a function of speed in electromagnetic suspension system (EMS) using the finite element method is presented. It is shown that, as in the case of the lift force, the lateral restoring force decreases with increasing speed, and the lateral dynamic characterisitic for lateral disturbance at low speed is different from that at high speed.

  • PDF

A Suspension Control of A PM-based Magnetic Suspension System (영구자석을 포함한 자기부상시스템의 부상제어)

  • Kim, Jong-Moon;Kim, Choon-Kyung;Park, Min-Kook;Chun, Jong-Min;Pyon, Han-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2264-2266
    • /
    • 2001
  • In this paper, some suspension results for a magnetic suspension system with permanent magnet are presented. The electromagnetic model using the equivalent magnetic circuit is shown. And some control simulation results using Matlab/Simulink S/W are presented.

  • PDF