• Title/Summary/Keyword: Electromagnetic Numerical Analysis

Search Result 422, Processing Time 0.027 seconds

Control of free surface shape in the electromagnetic casting process (전자기 주조공정에서의 자유표면 형상 제어)

  • 박재일;강인석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.612-615
    • /
    • 1996
  • In the continuous casting process, molten metal contacts the mold wall and the molten metal surface is subject to the mold oscillation. The mold oscillation results in the oscillation marks on the surface of solidified steel, which has undesirable effects on the quality of slabs. In order to reduce the oscillation marks by achieving soft contact of molten metal with the mold surface, alternating magnetic field is applied to the surface of molten metal. However, if the magnetic field strength becomes too strong, the melt flow induced by the magnetic field. causes the instability of the molten metal surface, which has also the bad influence on the slab quality. Therefore, it is very important to choose the optimal position of the inductor coil and the optimal level of electric power to minimize the surface defects. In the present work, as a first step toward the optimization problem of the process, numerical studies are performed to investigate the effects of coil position and the electric power level on the meniscus shape and the flow field. As numerical tools, the boundary integral equation method(BIEM) is used for the magnetic field analysis and the finite difference method (FDM) with orthogonal grid generation is used for the flow analysis.

  • PDF

Design of Directional Couplers in Bilevel Microstrip Using the Least Squares Residual Method (최소자승법을 이용한 이중층 마이크로스트립 방향성 결합기의 설계)

  • 양기덕;김원기;이용민;나극환;신철재
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.2
    • /
    • pp.253-264
    • /
    • 1998
  • In this paper, a design method for directional couplers using bilevel microstrip substrates is proposed. This kind of broadside-coupled coupler provides large coupling factors and broadband characteristics which can not be provided by conventional edge-coupled couplers. Physical dimensions needed for design are obtained by numerical analysis of characteristic parameters of the coupler using the least squares residual method, a kind of variational method, and an eigenvalue problem analysis method. A 3[dB] directional coupler is designed by the proposed method at the center frequency of 1 GHz, built, and tested. The validation and accuracy of the method are confirmed by comparing the numerical results with the experimental results.

  • PDF

Numerical Analysis of Electromagnetic and Temperature Fields Induced by Femtosecond Laser Irradiation of Silver Nanowires (은 나노선 펨토초 레이저 조사에 의해 유도되는 전자기장 및 온도장 수치 해석)

  • Ha, Jeonghong;Kim, Dongsik
    • Laser Solutions
    • /
    • v.18 no.1
    • /
    • pp.12-17
    • /
    • 2015
  • This work performed numerical analysis of electromagnetic field and thermal phenomena occurring in femtosecond laser irradiation of silver nanowires. The local electric field enhancement was computed to calculate the optical energy dissipation as a Joule heating source and the thermal transport was analysed based on the two-temperature model (TTM). Electron temperature increased up to 1000K after 50fs and its spatial distribution became homogeneous after 80fs at the fluence of 100mJ/cm2. The result of this work is expected to contribute to revealing the photothermal effects on silver nanowires induced by femtosecond laser irradiation. Although the highest increase of lattice temperature was substantially below the melting point of silver, the experimental results showed resolidification and fragmentation of the silver nanowire into nanoparticles, which cannot be explained by the photothermal mechanism. Further studies are thus needed to clarify the physical mechanisms.

Solution of TE Scattering by a Resistive Strip Grating Between a Double Dielectric Layer Using FGMM (FGMM을 이용한 2중 유전체층 사이의 저항띠 격자구조에 의한 TE 산란 해)

  • Uei-Joong Yoon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.619-624
    • /
    • 2023
  • In this paper, TE(transverse electric) scattering problems by a resistive strip grating between a double dielectric layer are analyzed by using the FGMM(fourier galerkin moment method) known as a numerical method of electromagnetic fileld. The boundary conditions are applied to obtain the unknown field coefficients, the scattered electromagnetic fields are expanded in a series of Floquet mode functions, and the resistive boundary condition is applied to analysis of the resistive strip. In order to deal with the problem of the double dielectric layer, numerical calculation was performed only when the thickness and relative permittivity of the dielectric layers had the same value. Overall, as the resistivity of the uniform resistivity increased, the current density induced in the resistive strip decreased, the reflected power decreased, and the transmitted power relatively increased. The numerical results of the structure proposed in this paper are shown in good agreement compared to the results of PMM, a numerical analysis method of the existing paper.

Numerical Analysis of Magnetic Flux Leakage Inspection (누설자속탐상의 수치해석)

  • Lee, Hyang-Beom;Kim, Sean
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.5
    • /
    • pp.485-492
    • /
    • 2001
  • In this paper, electro-magnetic numerical analysis of MFL(magnetic flux leakage) method is presented. For the electromagnetic numerical analysis, 2-D FEM(finite element method) is used. The magnetic vector potential is used as a variable. The analysis of the magnetic field considering the magnetic nonlinearity is performed for the effect of the magnetic salutation. For the verification of the validity of the numerical simulation results, by using the lab-made experimental setup, non-destructive inspection is performed. The SM 45C carbon steel is used as a specimen and the artificial defects are made on the specimen. The non-destructive testing for the detection of the defect is performed. The results according to the variation oi the defect depth and the defect shape are obtained. The experimental results are compared to the numerical ones, and we conclude that the numerical results are similar to the experimental ones. So the possibility of simulation of the MFL by using the numerical analysis is shown in this paper.

  • PDF

Absorbing Boundary Conditions and Parallelization for Waveguide Electromagnetic Analysis Using Finite Element Method (유한요소법을 이용한 도파관 전자기 해석의 흡수경계조건 고찰 및 병렬화)

  • Park, Woobin;Kim, Moonseong;Lee, Woochan
    • Journal of Internet Computing and Services
    • /
    • v.23 no.3
    • /
    • pp.67-76
    • /
    • 2022
  • Power and signal transmission using electromagnetic waves are essential in modern times, and a guided structure is needed to transmit electromagnetic waves efficiently through the desired path. This paper performed an electromagnetic simulation using the in-house code for the 2-D/3-D waveguide using the finite element method. The accuracy of the analysis was verified by comparing it with the results of HFSS, a representative electromagnetic wave simulation software. In addition, the performance of the Absorbing Boundary Condition (ABC), which is essential to truncate the infinite computational domain for computational electromagnetics, was analyzed. Finally, the parallelization technique was applied to accelerate the simulation speed, demonstrating performance improvement.

Three-Dimensional Borehole Radar Modeling (3차원 시추공 레이다 모델링)

  • 예병주
    • Economic and Environmental Geology
    • /
    • v.33 no.1
    • /
    • pp.41-50
    • /
    • 2000
  • Geo-radar survey which has the advantage of high-resolution and relatively fast survey has been widely used for engineering and environmental problems. Three-dimensional effects have to be considered in the interpretation of geo-radar for high-resolution. However, there exists a trouble on the analysis of the three dimensional effects. To solve this problem an efficient three dimension numerical modeling algorithm is needed. Numerical radar modeling in three dimensional case requires large memory and long calculating time. In this paper, a finite difference method time domain solution to Maxwell's equations for simulating electromagnetic wave propagation in three dimensional media was developed to make economic algorithm which requires smaller memory and shorter calculating time. And in using boundary condition Liao absorption boundary. The numerical result of cross-hole radar survey for tunnel is compared with real data. The two results are well matched. To prove application to three dimensional analysis, the results with variation of tunnel's incident angle to survey cross-section and the result when the tunnel is parallel to the cross-section were examined. This algorithm is useful in various geo-radar survey and can give basic data to develop dat processing and inversion program.

  • PDF

Modeling of HTS Resistive Superconducting Fault Current Limiter Using EMTDC (EMTDC를 이용한 고온초전도 저항형 한류기 모델링)

  • Lee, Jae-Deuk;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.216-218
    • /
    • 2002
  • This study is the modeling of resistive type SFCLs. There was numerical modeling and simulation using EMTP in the conventional modeling of SFCL. The numerical modeling was presented an analysis of numerical characteristic of SFCL. And the modeling using EMTP was made up of the study for setting method of specific parameters of a SFCL. This paper proposes the model of resistive type superconducting fault current limiter using EMTDC(Electromagnetic transients for DC analysis program). The simulation schemes that can be applied to the utility network readily and cheaply under various conditions considering the sort of fault, the capacity of systems as well are strongly expected and emphasized among researchers.

  • PDF

Analysis of the Electromagnetic Scattering by a Tapered Resistive Strip Grating with Zero Resistivity at the Strip-Edges On a Grounded Dielectric Plane (접지된 유전체층 위에 저항띠 양끝에서 0으로 변하는 저항율을 갖는 저항띠 격자구조에서의 전자파 산란 해석)

  • 정오현;윤의중;양승인
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.11A
    • /
    • pp.883-890
    • /
    • 2003
  • In this paper, Electromagnetic scattering problems by a resistive strip grating with tapered resistivity on a grounded dielectric plane according as strip width and spacing, relative permittivity and thickness of dielectric layers, and incident angles of a electric wave are analyzed by applying the FGMM(Fourier-Galerkin Moment Method) Known as a numerical procedure. The scattered electromagnetic fields are expanded in a series of floguet mode functions. The boundary conditions are applied to obtain the unknown field coefficients and the resistive boundary condition is used for the relationship between the tangential electric field and the electric current density on the strip. The tapered resistivity of resistive strips varies zero resistivity at strip edges. Then the induced surface current density on the resistive strip is expanded in a series of Chebyshev polynomials of the second kind. The numerical results of the geometrically in this paper are compared with those for the existing uniform resistivity and perfectly conducting strip. The numerical results of the normalized reflected power for conductive strips case with zero resistivity in this paper show in good agreement with those of existing paper.

Numerical Analysis of Plate Deformation by Induction Heating (고주파 유도 가열에 의한 판 변형의 간이 수치 해석)

  • 장창두;김호경;하윤석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.311-318
    • /
    • 2002
  • In this study, we developed an analysis method of plate forming by induction heating and verified the effectiveness of the present method through a series of experiments. The phenomena of the induction heating is a 3D transient problem coupled with electromagnetic, heat transfer, and elastoplastic large deformation analyses. To solve the problem, we suggest a proper model and an integrated system. Using the present analysis model, we can estimate the plate deformation in heating without experiments and simulate the plate bending process of induction heating.

  • PDF