• Title/Summary/Keyword: Electromagnetic Finite Element Analysis

Search Result 448, Processing Time 0.023 seconds

A Numerical Analysis of Eddy-Current Electromagnetic Field for the In-Process Measurement of Case Depth in Laser Surface Hardening Processes (레이저 표면경화공정에서 경화층깊이의 실시간 측정을 위한 와전류 전자기장의 이론적 해석)

  • 박영준;조형석;한유희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.529-539
    • /
    • 1994
  • In laser heat treatment process of steels, the thin layer of substrate is rapidly heated to the austenitizing temperature and subsequently cooled at a very fast rate due to the self-quenching effect. Consequently, it is transformed to martensitic structure which has low magnetic permeability. This observation facilitates the use of a sensor measuring the change of electromagnetic field induced by the hardening layer. In this paper, the eddy-current electromagnetic field is analyzed by a finite element method. The purpose of this analysis is to investigate how the electrical impedance of the sensor's sensing coil varies with the change in permeability. To achieve this, a numerical model is formulated, taking into consideration the hardening depth, distance of the sensor from the hardened surface and the frequency driving the sensor. The results obtained by numerical simulation show that the eddy-current measurement method can feasibly be used to measure the changing hardening depth within the frequency range from 10 kHz to 50 kHz.

Effects of Electrode Configurations on the Characteristics of Axial Magnetic Fields in Vacuum Interrupter (전극형상 변화가 진공차단기내 축방향 자기장 특성에 미치는 영향)

  • Hwang, Jung-Hoon;Lee, Jong-Chul;Kim, Youn-Jea
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.1
    • /
    • pp.7-12
    • /
    • 2008
  • The vacuum interrupter (VI) is used for medium-voltage switching circuits due to its abilities and advantages as a compacted environmental friendly circuit breaker. In general, the application of a sufficiently strong axial magnetic field (AMF) permits the arc to be maintained in a diffused mode to a high-current vacuum arc. A full understanding of the vacuum arc physics is very important since it can aid to improve the performance of vacuum interrupter. In order to closely examine the vacuum arc phenomena, it is necessary to predict the magnetohydrodynamic (MHD) characteristics by the multidisciplinary numerical modeling, which is coupled with the electromagnetic and hydrodynamic fields, simultaneously. In this study, we have investigated the effect of changing geometrical parameters for electromagnetic behaviors of high-current vacuum arcs with two different types of AMP contacts, which are coil-type and cup-type, using a commercial finite element analysis (FEA) package, ANSYS. The present results are compared with those of MAXWELL 3D, a reliable electromagnetic analysis software, for verification.

Prediction Method of Loudspeaker Driver Characteristics (스피커 드라이브 특성 예측 기법)

  • Park, Soon-Jong;Rho, Sung-Tak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.7
    • /
    • pp.325-332
    • /
    • 2008
  • The prediction method of TS parameters, frequency response, and electrical input impedance is proposed with physical properties of parts and results of electromagnetic FEA(Finite Element Analysis) in a loudspeaker driver design. In design for weight reduction and improvement of flux density asymmetry, the prediction results are well coincided with measurement ones. As the applications, it can be applied in design for improvement of the $2^{nd}$ harmonic distortion with flux density distribution analysis. The proposed method is expected to be utilized for reducing trial-and-error process in electromagnetic parts design. It can also be used for providing guidelines for parts selection in the early stages.

Analysis of Partial Discharge Signal Propagation Characteristics in GIS Using FEM (FEM을 이용한 GIS내 부분방전 신호의 전파특성 해석)

  • Lee, D.H.;Lee, H.D.;Lee, Y.H.;Park, K.H.;Ryu, K.Y.;Sin, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1835-1837
    • /
    • 2004
  • The UHF electromagnetic waves excited by PD pulses propagate along the GIS busbar not only TEM mode, but also TE and TM mode. Generally the waves detected by the UHF sensors are those of high order modes and such waves can only propagate the higher than cut-off frequency. In this paper, computed cut-off frequency of 362[kV] GIS by each modes and simulated electromagnetic field of each propagation modes by FEM(Finite Element Method) program. Frequency band of each TEmn/TMmn modes were determinated by simulation results and were discussed optimal position of UHF sensor from this results.

  • PDF

A FEM Analysis of Remote Field Eddy Current Distribution to CANDU Fuel Channel Tube(I) (CANDU형 핵연료 채널 압력관에 대한 원거리장 와전류의 자계분포 특성해석(I))

  • Huh, Hyung;Jung, Hyun-Kyu;Kim, Kern-Jung
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.690-692
    • /
    • 2001
  • A FEM model of the remote-field eddy current effect is presented for zirconium-2.5percent niobium(Zr-2.5%Nb) nuclear reactor pressure tubes to demonstrate the important electromagnetic field. Phenomena that describe this effect. This model is applied to evaluate the optimal operating frequency and detector position. There are many ambiguous experimental results connected with this technique. Finite element calculations can be used in the interpretation of these experimental results even though the electromagnetic fields measured in the remote-field technique are very small.

  • PDF

Analysis of Partial Discharge Signal Propagation Characteristics in GIS using FEM (FEM을 이용한 GIS내 부분방전 신호의 전파특성 해석)

  • Kim Jae-Chul;Lee Do-Hoon;Song Seung-Yeop;Kim Kwang-Whoa
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.11
    • /
    • pp.624-629
    • /
    • 2004
  • The UHF electromagnetic waves excited by PD pulses propagate along the GIS busbar not only TEM mode, but also TE and TM mode. Generally the waves detected by the UHF sensors are those of high order modes and such waves can only propagate higher than cut-off frequency. In this paper, the cut-off frequency of 362[kV] GIS for each modes is computed and the electromagnetic field of each propagation modes is simulated by FEM(Finite Element Method) program. Frequency band of each TEmn/TMmn modes was determinated by simulation results and was discussed optimal position of UHF sensor from this results.

A study on the measuring of relative permittivity of microwave PCB with frequency for the numerical analysis of EMI (EMI 수치해석을 위한 주파수에 따른 마이크로파 인쇄회로기판의 비유전율의 측정에 관한 연구)

  • Jang, In-Bum;Kim, Yong-Chun;Kim, Chung-Heok;Lee, Joon-Ung
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.308-310
    • /
    • 1997
  • In this paper, to anlayze electromagnetic distribution, measure the variation of relative permittivity of Glass-epoxy substrate for Computer-main-board and Tenon substrate for handphone or PCS in the frequency range $100[MHz]{\sim}1[GHz]$, in room temperature. To measure relative permittivity, suggested the Microstripline method. As the frequency increase, the variation of relative permittivity of Glass-epoxy is bigger than Tefoln's. And simulate the electromagnetic distribution on the PCBs in the infinite region applying the open boundary condition with these results by Finite Element Method.

  • PDF

Shape Optimization of Magnetic Systems with state variable Constraints (상태변수 구속조건을 갖는 자장시스템의 형상최적화)

  • Kim, Chang-Wook;Choi, Myung-Jun;Lee, Se-Hee;Park, Il-Han
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.143-145
    • /
    • 1998
  • This paper presents the shape optimization algorithm of magnetic systems with, state variable constraints using the Finite Element Method. In the design' of electromagnetic systems, sometimes we have to consider the state variables when they seriously affect the performance of electromagnetic systems. So we should define that some design problems have the constraints of the state variables. We use the gradient of constraints and sensitivity analysis in order to consider the state variable constraints and obtain an optimal shape. The optimal shape must be satisfied constraints, so we take the gradient projection method as a kind of optimization methods. In this paper a numerical example with state variable constraints uses the superconducting electromagnet that has another constraint which the volume of the superconductor should be constant.

  • PDF

Investigation on Electromagnetic Field Characteristics of Interior Permanent Magnet Synchronous Machine Considering Harmonics of Phase Current due to Influence of Mechanical Energy Storage System

  • Park, Yu-Seop
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.78-84
    • /
    • 2017
  • This paper investigates the influence of mechanical energy storage on the interior permanent magnet synchronous machine (IPMSM) when it is operated in the generating mode. An IPMSM with six-poles and nine-slots employing concentrated coil winding type is considered as the analysis model, and a surface-mounted permanent magnet synchronous motor directly connected to a heavy wheel is applied as the mechanical energy storage system by using the moment of inertia. Based on the constructed experimental set-up with manufactured machines and power converters, the generated electrical energy is converted into the mechanical energy, and the electromagnetic filed characteristics of IPMSM are subsequently investigated by applying the measured phase current of IPMSM based on finite element method. Compared to the characteristics in a no-load condition, it is confirmed that the magnetic behavior, radial force, and power loss characteristics are highly influenced by the harmonics of the phase current due to the mechanical energy storage system.

Shape Modelling of Levitated Molten Metal in Axisymmetric Induction Beating System (고주파 유도 가열 장치에서 피가열체의 형상 결정)

  • Suh, C.D.;Lee, H.B.;Hahn, S.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.954-956
    • /
    • 1993
  • This paper describes the process of levitation melting of metals in an axisymmetric induction heating system. This process has advantages of low heat losses, heating with short times and clean operating conditions. The shape of molten metal is determined using sensitivity analysis and optimization technique. Electromagnetic, gravitational and surface tension energies are considered, and these energies are used as an objective function in optimization process. Electromagnetic field are calculated using the finite element method. The fact that volume is constant in the process is also considered as an equality constraint.

  • PDF