• Title/Summary/Keyword: Electromagnetic Coupling Modeling

Search Result 27, Processing Time 0.03 seconds

Analysis of Shielded Twisted Pair Cable to External Field Coupling by Expanded Chain Matrix Modeling

  • Cho, Yong-Sun;Jung, Hyun-Kyo;Cheon, Changyul;Chung, Young-Seek
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2049-2057
    • /
    • 2014
  • In this paper, a numerical method for analyzing coupling between high-altitude electromagnetic pulse (HEMP) as external field and a shielded twisted pair (STP) cable is proposed, which is based on an expanded chain matrix. Load responses of electromagnetic (EM) field excitation in uniform transmission line (TL) are solved by Baum-Liu-Tesche (BLT) equations in frequency domain, however, it is difficult to apply BLT equations to solve load responses of STP cable because the iteratively changing configuration of each twisted pairs are involved in cable. To avoid this problem and decrease memory and CPU time, we proposed the expanded chain matrix modeling method that is calculated using ABCD parameters, and applied multi-conductor transmission line (MTL) theory to consider the EMP coupling effectiveness of each twisted pairs. The results implemented by the proposed method are presented and compared with those obtained by the finite-difference time domain (FDTD) method as a kind of 3D full wave analysis.

System Level ESD Analysis - A Comprehensive Review II on ESD Coupling Analysis Techniques

  • Yousaf, Jawad;Lee, Hosang;Nah, Wansoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.2033-2044
    • /
    • 2018
  • This study presents states-of-the art overview of the system level electrostatic discharge (ESD) analysis and testing. After brief description of ESD compliance standards and ESD coupling mechanisms, the study provides an in-depth review and comparison of the various techniques for the system level ESD coupling analysis using time and frequency domain techniques, full wave electromagnetic modeling and hybrid modeling. The methods used for improving system level ESD testing using troubleshooting and determining the root causes of soft failures, the optimization of ESD testing and the countermeasures to mitigate ESD problems are also discussed.

Time Domain Response of Random Electromagnetic Signals for Electromagnetic Topology Analysis Technique

  • Han, Jung-hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.2
    • /
    • pp.135-144
    • /
    • 2022
  • Electromagnetic topology (EMT) technique is a method to analyze each component of the electromagnetic propagation environment and combine them in the form of a network in order to effectively model the complex propagation environment. In a typical commercial communication channel model, since the propagation environment is complex and difficult to predict, a probabilistic propagation channel model that utilizes an average solution, although with low accuracy, is used. However, modeling techniques using EMT technique are considered for application of propagation and coupling analysis of threat electromagnetic waves such as electromagnetic pulses, radio wave models used in electronic warfare, local communication channel models used in 5G and 6G communications that require relatively high accuracy electromagnetic wave propagation characteristics. This paper describes the effective implementation method, algorithm, and program implementation of the electromagnetic topology (EMT) method analyzed in the frequency domain. Also, a method of deriving a response in the time domain to an arbitrary applied signal source with respect to the EMT analysis result in the frequency domain will be discussed.

Electromagnetic Field Analysis on Surge Response of 500 kV EHV Single Circuit Transmission Tower in Lightning Protection System using Neural Networks

  • Jaipradidtham, Chamni
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1637-1640
    • /
    • 2005
  • This paper presents a technique for electromagnetic field analysis on surge response due to Mid-span back-flashovers effects in lightning protection system of 500 kV EHV single circuit transmission tower by the neural networks method. These analyses are based on modeling lightning return stroke as well as on coupling the electromagnetic fields of the stroke channel to the line. The ground conductivity influences both the electric field as well as the coupling mechanism and hence the magnitude and wave shape of the induced voltage. The technique can be used to analyzed the corona voltage effect, the effective of stroke to the span tower, the surge impedance of transmission lines. The maximum voltage from flashovers effects in the lines. The model is compatible with general electromagnetic transients programs such as the ATP-EMTP. The simulation results show that this study analyses for time-domain with those produced by a cascade multi-section model, the surge impedance of a full-sized tower hit directly by a lightning stroke is discussed.

  • PDF

Investigation of Electromagnetic Field Coupling with Twisted Conducting Line by Expanded Chain Matrix

  • Cho, Yong-Sun;Ro, Jong-Suk;Chung, Yong-Seek;Cheon, Changyul;Jung, Hyun-Kyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.364-370
    • /
    • 2013
  • In the current paper, we propose a new modeling algorithm to analyze the coupling between an incident electromagnetic field (EMF) and a twisted conducting line, which is a kind of non-uniform line. Typically, analysis of external field coupling to a uniform transmission line (TL) is implemented by the Baum-Liu-Tesche (BLT) equation so that the induced load responses can be obtained. However, it is difficult to apply this method to the analysis of a twisted conducting line. To overcome this limitation, we used a chain matrix composed of ABCD parameters. The proposed algorithm expands the dimension of the previous chain matrix to consider the EMF coupling effectiveness of each twisted pair, which is then applied to multi-conductor transmission line (MTL) theory. In addition, we included a comparative study that involves the results of each method applied in the conventional BLT equation and new proposed algorithm in the uniform two-wire TL case to verify the proposed method.

A Study of Error Estimation and Adaptive Junction Subdivision for Electromagnetic Topology (전자기 토폴러지 기법에서의 오차 추정 및 적응적 정션 세분화 연구)

  • Park, Yoon-Mi;Chung, Young-Seek;Jung, Hyun-Kyo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.6
    • /
    • pp.623-632
    • /
    • 2013
  • Electromagnetic topology simplifies a complex analysis area in accordance with electromagnetic coupling. And then electromagnetic topology divides the simplified continuous area into sub-areas and analyzes electromagnetic problems at the sub-areas. Therefore electromagnetic topology has a merit to analyze the electromagnetic coupling in large and complex systems, however simplified modeling technique can generate large errors. In this paper, power balance method is used to estimate errors and subdivide junctions in the electromagnetic topology. The method is applied to analyze conducted and radiated electromagnetic coupling in two kinds of cavity models. Improvement of accuracy was accomplished in accordance with junction subdivision. Moreover we could save computation time and memory comparing with FDTD results.

Electromagnetic Modeling of High Altitude Electromagnetic Pulse Coupling into Large-Scale Underground Multilayer Structures (다층 지하 구조물로의 고고도 전자기파(HEMP) 커플링 현상에 대한 전자기적 모델링)

  • Kang, Hee-Do;Oh, Il-Young;Kim, Jung-Ho;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.3
    • /
    • pp.392-401
    • /
    • 2012
  • This paper gives a electromagnetic coupling mechanism of the high altitude electromagnetic pulse (HEMP) into large- scale underground multilayer structures using analytic and numerical methods. The modeling methods are firstly addressed to the HEMP source which can be generated by intentional nuclear explosion. The instantaneous and intense electromagnetic pulse of the HEMP source is concerned from DC to 100 MHz band, because the power spectrum of the HEMP is rapidly decreased under -30 dB over the 100 MHz band. Through this range, a penetrated electric field distribution is computed within the large-scale underground multilayer structures. As a result, the penetrated electric field intensities at 0.1 and 1 MHz are about 10 and 5 kV/m, respectively. Therefore, additional shielding techniques are introduced to protect buried structures within the large-scale underground structures such as high-lossy material and filtering structures (wire screen).

Circuit Model Analysis for Traces that Cross a DGS

  • Jung, Kibum;Lee, Jongkyung;Chung, Yeon-Choon;Choi, Jae-Hoon
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.4
    • /
    • pp.240-246
    • /
    • 2012
  • This paper presents a novel modeling technique for traces that cross a defected ground structure. A simple and accurate equivalent circuit model provides clear insight into the coupling mechanism between a microstrip line and a slot or split. The circuit models consist of a transformer as the coupling mechanism and LC resonators as the ground with a slot or split structure. Resistors, capacitors, and inductors are added to the model to increase accuracy and equivalence at high frequency. Simulated and measured S-parameters are presented for defected ground structures. The accuracy and validity of the proposed equivalent circuit model is verified by evaluation of the S-parameter characteristics of the defected ground structures and comparison with measured results.

Theoretical Analysis and Modeling for PCB Embedded Tunable Filter with Inductive Coupling (유도결합구조 가변형 대역통과필터의 이론적 분석 및 모델링)

  • Lee, Tae-C.;Park, Jae-Y.
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1929_1930
    • /
    • 2009
  • Fully embedded tunable bandpass filter (BPF) with inductive coupling circuits is newly designed and demonstrated for UHF TV tuner ranged from 500MHz to 900MHz receivers. Conventional RF tuning circuit with an electromagnetic coupled tunable filter has several problems such as large size, high volume, and high cost, since the electromagnetic coupled filter is comprised of several passive components and air core inductors to be assembled and controlled manually. To address these obstacles, compact tunable filter with inductive coupling circuit was embedded into low cost organic package substrate. The embedded filter was optimally designed to have high performance by using high Q spiral stacked inductors, high dielectric $BaTiO_3$ composite MIM capacitors, varactor diodes. It exhibited low insertion loss of approximately -2dB, high return loss of below -10dB, and large tuning range of 56.3%. It has an extremely compact size of $3.4{\times}4.4{\times}0.5mm^3$.

  • PDF

A study on the Difference Arrow of GDS (Geomagnetic Depth Sounding) Survey using 2-D MT (Magneto-Telluric) Modeling (2차원 MT(Magneto-Telluric)모델링을 이용한 지자기 수직탐사(Geomagnetic Depth Sounding)에서의 차이 지시자의 연구)

  • 양준모;오석훈;이덕기;윤용훈
    • Economic and Environmental Geology
    • /
    • v.35 no.6
    • /
    • pp.567-573
    • /
    • 2002
  • Two-dimensional MT (Magneto-Telluric) modeling is performed to verify the validity of difference arrow for GDS(Geomagnetic Depth Sounding) survey. The electromagnetic mutual coupling between the sea and in-land conductor is used as a criterion that judges the validity of difference arrow. In this study, the mutual coupling between them is examined according to the spatial distance between them and the period of magnetic variations. The difference arrow is valid for conductors located at surface which are far from the sea or when the long period is used, but the mutual coupling is weak for buried conductor in all the periods. However, when a conductor extends vertically down to the deep part, the validity of difference arrow is in doubt, since the strong mutual coupling influences up to the long period. Therefore, to remove the known conductor effect such as sea effect from the observed induction arrow, the mutual coupling between them must be examined and the caution must be exercised in interpreting the resultant difference arrow if mutual coupling between them is strong.