• Title/Summary/Keyword: Electromagnetic Coupling

Search Result 586, Processing Time 0.028 seconds

Design and Dynamic Characteristics analysis of Moving Magnet Linear Actuator Considering the Magnetic Nonlinear phenomena (자기적 비선형을 고려한 Moving Magnet Linear Actuator의 설계 및 동특성 해석)

  • Hwang Kyu-Hwan;Kim Chul-Han;Jeon Kyeo-Lock;Cho Yun-Hyun
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.259-262
    • /
    • 2003
  • This paper is proposed a new linear actuator with the permanent magnet on the mover. This linear actuator is designed to produce the vibration of a osillator. In order to evaluate its dynamic performance, the equivalent coupling parameter between mechanical and electromagnetic equations of the linear actustor, which is considered the magnetic nonlinear phenomena, is analyzed by the finite element method and estimated the thrust, displacement and acceleration with the simualation values and the experimenta ones.

  • PDF

Design and Analysis of the 300 W Planar Transformer (300 W급 평면 변압기의 설계 및 분석)

  • ;;;;;Ustinov Evgeniy
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.5
    • /
    • pp.502-507
    • /
    • 2004
  • The forward planar transformer, which had power capacity of 300 W, input voltage of 220 V, output voltage of 15 V, and switching frequency of 300 KHz, was designed and manufactured by using the planar core with large effective area and the flat copper leadframes for miniaturization and high efficiency of the switching mode power supply (SMPS). As well as, a forward converter equipped with the above mentioned planar transformer was manufactured and electromagnetic characteristics were investigated. The numerical value of turns for 1st and 2nd winding were 15 and 2 respectively The self inductance of 1st winding was 1.592 mH, very low leakage inductance of 2.7 $\mu$H, and the coupling factor of 0.928 were obtained at switching frequency of 300 KHz. The high efficiency of 88.62 % for the SMPS equipped with planar transformer was obtained at power capacity of 300 W.

Analysis of the Earth Resistance for the Tower Footing of T/L (송전선로 철탑기초의 접지저항 해석)

  • Lee, H.G.;Ha, T.H.;Bae, J.H.;Kim, D.K.
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.344-346
    • /
    • 2001
  • The sharing of common corridors by electric power transmission lines and pipelines is becoming more common place. However, such corridor sharing can result in undesired coupling of electromagnetic energy from the power lines to the near facilities. During a fault on any of the transmission lines, energization of the earth by supporting structures near the fault can result in large voltages appearing locally between the earth and the steel wall of any nearby pipeline. This paper presents the outline of the tower footings for the transmission lines having been used in KEPCO and analyzes the earth resistance for operation method of the tower footing, that is contact presence for the anchor and reinforcing rob of the tower and foundation presence of the underground wiring.

  • PDF

Dual-band Frequency Selective Surface Bandpass Filters in Terahertz Band

  • Qi, Limei;Li, Chao
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.673-678
    • /
    • 2015
  • Terahertz dual-band frequency selective surface filters made by perforating two different rectangular holes in molybdenum have been designed, fabricated and measured. Physical mechanisms of the dual-band resonant responses are clarified by three differently configured filters and the electric field distribution diagrams. The design process is straightforward and simple according to the physical concept and some formulas. Due to the weak coupling between the two neighboring rectangle holes with different sizes in the unit cell, good dual-band frequency selectivity performance can be easily achieved both in the lower and higher bands by tuning dimensions of the two rectangular holes. Three samples are fabricated, and their dual-band characteristics have been demonstrated by a THz time-domain spectroscopy system. Different from most commonly used metal-dielectric structure or metal-dielectric-metal sandwiched filters, the designed dual-band filters have advantages of easy fabrication and low cost, the encouraging results afforded by these filters could find their applications in dual-band sensors, THz communication systems and other emerging THz technologies.

Optoelectronic and electronic applications of graphene

  • Yang, Hyun-Soo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.67.2-67.2
    • /
    • 2012
  • Graphene is expected to have a significant impact in various fields in the foreseeable future. For example, graphene is considered to be a promising candidate to replace indium tin oxide (ITO) as transparent conductive electrodes in optoelectronics applications. We report the tunability of the wavelength of localized surface plasmon resonance by varying the distance between graphene and Au nanoparticles [1]. It is estimated that every nanometer of change in the distance between graphene and the nanoparticles corresponds to a resonance wavelength shift of ~12 nm. The nanoparticle-graphene separation changes the coupling strength of the electromagnetic field of the excited plasmons in the nanoparticles and the antiparallel image dipoles in graphene. We also show a hysteresis in the conductance and capacitance can serve as a platform for graphene memory devices. We report the hysteresis in capacitance-voltage measurements on top gated bilayer graphene which provide a direct experimental evidence of the existence of charge traps as the cause for the hysteresis [2]. By applying a back gate bias to tune the Fermi level, an opposite sequence of switching with the different charge carriers, holes and electrons, is found [3]. The charging and discharging effect is proposed to explain this ambipolar bistable hysteretic switching.

  • PDF

Finite Element Analysis for Eddy Current Signal of Aluminum Plate with Surface Breaking Crack (알루미늄 평판의 표면결함에 대한 와전류 신호의 유한요소해석)

  • Lee Joon-Hyun;Lee Bong-Soo;Lee Min-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.10 s.241
    • /
    • pp.1336-1343
    • /
    • 2005
  • The detection mechanism of the flaw for the nondestructive testing using eddy current is related to the interaction of the induced eddy currents in the test specimen with flaws and the coupling of these interaction effects with the moving test probe. In this study, the two-dimensional electromagnetic finite element analysis(FEM) fur the eddy current signals of the aluminum plate with different depth of surface cracks is described and the comparison is also made between experimental and predicted signals analyzed by FEM. In addition, the characteristics of attenuation of the eddy current density due to the variation of the depth of a conductor are evaluated. The effective parameters for the application of eddy current technique to evaluate surface cracks are discussed by analyzing the characteristics of the eddy current signals due to the variation of crack depths.

Magnetic Behaviors of Isolated Fe-Co-Ni Nanoparticles in a Random Arrangement

  • Yang, Choong Jin;Kim, Kyung Soo;Wu, Jianmin
    • Journal of Magnetics
    • /
    • v.6 no.3
    • /
    • pp.94-100
    • /
    • 2001
  • Fe-Co-Ni particles with an average size of 45 and 135 nm are characterized in terms of magnetic phase transformation and magnetic properties at room temperature. BCC structure of Fe-Co-Ni spherical particles can be synthesized from Fe-Co-Ni-Al-Cu precursor films by heating at 600-80$0^{\circ}C$ for the phase separation of Fe-Co rich Fe-Co-Ni particles, followed by a post heating at $600^{\circ}C$ for 5 hours. The average size of nanoparticles was directly determined by the thickness of precursor films. Exchange interactive hysteresis was observed for the nano-composite (Fe-Co-Ni)+(Fe-Ni-Al) films resulting from the short exchange interface between ferromagnetic Fe-Co-Ni particles surrounded by almost papramagnetic Ni-Al-Fe matrix. Arraying the isolated Fe-Co-Ni nano-particles in a random arrangement on $Al_2O_3$substrate the particle assembly showed a behavior of dipole interactive ferromagnetic clusters depending on their volume and inter-particle distance.

  • PDF

Enhanced evanescent field force on Mie particles by coupling with surface plasmons (표면 플라즈몬과 결합된 에바네슨트파가 Mie입자에 미치는 광압 분석)

  • Song, Young-Gon;han, Bong-Myung;Chang, Soo
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.6
    • /
    • pp.437-445
    • /
    • 2001
  • We examine theoretically the properties of the force on Mie particles induced by evanescent fields at a system of multilayer films (including a metal film), at which the surface plasmon resonance is excited by a p-polarized plane electromagnetic wave. An expression of the surface plasmon-coupled evanescent fields produced in Kretschmann (or Sarid) geometry is expanded in terms of vector spherical wave functions, while multiple reflections between the Mie particle and the metal boundary are taken into account. The Cartesian components of the force on Mie particles by the evanescent fields are analytically formulated and numerically evaluated. The force components are increased by one or two orders of magnitude at metal boundaries over those at dielectric boundaries. As a result, we can confirm the possibility of stable manipulation or rotation of a finite-sized object by forces of surface plasmon-coupled evanescent fields.

  • PDF

Design for Microstrip Array Antenna with EMC Dipole for Communication Satellite System (EMC 다이폴을 이용한 CS용 마이크로스트립 어레이 안테나의 설계)

  • 민경식;박세현;김동철;임학규;김상태
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.11a
    • /
    • pp.120-123
    • /
    • 1999
  • This paper presents the design method of EMC(Electromagnetic Coupling) microstrip array antenna for CS(Communication Satellite) system. Microstrip dipole antennas are attractive elements owing to the desirable properties such as simplicity, small size and linear polarization. From the optimum simulation results by the FDTD method[1], design parameters such as EMC dipole length, width, height and offset are discussed at 12CHz. The array characteristics of 5-elements and 10-elements array are also presented. By adjusting geometry of model antenna, we can design dual polarization EMC microstrip dipole antenna for CS system. Direction of nam beam is easily tilted by the control of distance between dipole elements.

  • PDF

Feed-through Noise Reduction Technique for MEMS Gyroscope (MEMS Gyroscope를 위한 feed-through 노이즈 제거 기법)

  • Park, Kyung-Jin;Kang, Seong-Mook;Baek, Chang-Wook;Kim, Ho-Seong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2247-2252
    • /
    • 2009
  • Since the dimensions of MEMS gyroscope are very small compared to those of conventional gyroscope, MEMS gyroscope should be able to measure charge of pico-coulomb caused by very small change of electrodes gap. However, feed-through signal from driving electrodes to the sensing electrodes due to the electromagnetic coupling is much greater than the sensing signal, which degrades the sensitivity of MEMS gyroscope. This paper introduces the feed-through noise canceling technique using dummy port and confirms the feasibility of feed-through noise canceling experimentally. Experimental results shows that, when driving signal is 6 Vpp, 30 kHz, feed-through signal of vacuum packaged Si Gyroscope decreases from -53.2 dBm to -77.1 dBm by using feed-through reduction technique. Q-factor that could not be measured without noise reduction is measured to be about 2500 and resonance frequency to be 7.018 kHz.