• Title/Summary/Keyword: Electromagnetic Conducted Immunity

Search Result 6, Processing Time 0.022 seconds

Evaluation of IC Electromagnetic Conducted Immunity Test Methods Based on the Frequency Dependency of Noise Injection Path (Noise Injection Path의 주파수 특성을 고려한 IC의 전자파 전도내성 시험 방법에 관한 연구)

  • Kwak, SangKeun;Kim, SoYoung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.4
    • /
    • pp.436-447
    • /
    • 2013
  • In this paper, Integrated circuit(IC) electromagnetic(EM) conducted immunity measurement and simulation using bulk current injection(BCI) and direct power injection(DPI) methods were conducted for 1.8 V I/O buffers. Using the equivalent circuit models developed for IC electromagnetic conducted immunity tests, we investigated the reliability of the frequency region where IC electromagnetic conducted immunity test is performed. The insertion loss for the noise injection path obtained from the simulation indicates that using only one conducted immunity test method cannot provide reliable conducted immunity test for broadband noise. Based on the forward power results, we analyzed the actual amount of EM noise injected to IC. We propose a more reliable immunity test methods for broad band noise.

A Study on the Electromagnetic Compatibility Evaluation of the Electronic Medical Instrumentation (전자의료기기의 전자파 적합성 평가에 관한 연구)

  • Song, C.G.;Kim, J.C.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.418-421
    • /
    • 2002
  • The immunity testing in this study was performed to examine the conducted immunity and radiated immunity in medical instrumentation. Experiments were performed to assess the conducted emission and radiated emission of medical instrumentation such as MRI, ultrasound system, and electro surgical unit etc. The emission testing revolves around conducted emissions (high-frequency currents) on power lines and signal cables. Emission testing also looks at the output of energy through the air (called radiated emissions) and analyzes the strength of those radio-frequency signals generated unintentionally by the electrical medical device that is under test. Finally, this study would provide significant data for furture research or electromagnetic interference and compatibility test in medical instrumentation.

  • PDF

EMC/LVD Compatibility Evaluation of ITER AC/DC Converter Subrack by EN 61000 and IEC 61010 (ITER AC/DC Converter 서브랙의 EN 61000 및 IEC 61010에 의한 EMC/LVD 시험평가)

  • Shin, Hyun-Kook;Oh, Jong-Seok;Song, In-Ho;Suh, Jae-Hak;Choi, Jung-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.3
    • /
    • pp.222-226
    • /
    • 2021
  • To comply with CE marking requirements, the electromagnetic compatibility (EMC) and low-voltage directive (LVD) tests are conducted on the sub-racks of International Thermonuclear Experimental Reactor (ITER) AC/DC converters and bypass switches. The EMC tests consist of a series of tests, including the electromagnetic interference test, the electromagnetic field immunity test, and the rapid transient burst immunity test. In the LVD test, the electric shock protection test, the xcessive temperature limit and heat resistance of equipment tests, and the fire spread prevention test are performed. This work presents and reviews the European Directive for EMC/LVD and introduces the methods of EMC and LVD tests for the sub-racks of AC/DC converters and bypass switches. It also evaluates the test method and results to meet the European Directive requirements for CE marking. The sub-racks of ITER AC/DC converters and bypass switches successfully pass the EMC and LVD tests.

A Study on the Effects of I&C Systems by EMI Generating from Corona Discharge at Transformer Area (변압기 지역 코로나 전자파 간섭에 의한 계측제어설비 영향에 관한 연구)

  • Min, Moon-Gi;Lee, Jae-Ki;Park, Jin-Yeub;Kim, Hee-Je
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.2
    • /
    • pp.266-271
    • /
    • 2014
  • The Electromagnetic Interference(EMI) generating from corona discharge of transformer area can interference the digital Instrument and Control(I&C) systems located nearby transformers. When the potential gradient of the electric field around the conductor is high enough to form a conductive region but not high enough to cause electrical breakdown to nearby objects, the EMI of corona discharge emits with the conducted and radiated noise and it interferences the signals of the I&C systems. Since digital I&C systems have an efficiency and competitive price, the analog I&C systems have been upgraded and displaced with the digital I&C systems but which have less EMI Immunity. There was no assessment to I&C systems by EMI generating corona discharge nearby transformers. When the safety-related I&C systems are installed in plants, the verification of equipment EMI should be done not in site-specific test but in test facilities. There are the need to do the site-specific EMI evaluation of corona discharge nearby transformers. This paper assesses the margin between plant emission limits and the highest composite plant emission of corona. When the non safety-related I&C systems are placed in transformer area, it suggests the appropriate radiated susceptibility level to EMI of corona discharge.

A study on the Conducted Noise Reduction in Three-Phase Boost Converter using Random Pulse Width Modulation (Random PWM 기법을 이용한 3상 승압형 컨버터 전도노이즈 저감에 관한 연구)

  • Jung, Dong-Hyo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.3
    • /
    • pp.120-125
    • /
    • 2002
  • The switching-mode power converter has been widely used because of its features of high efficiency and small weight and size. These features are brought by the ON-OFF operation of semiconductor switching devices. However, this switching operation causes the surge and EMI(Electromagnetic Interference) which deteriorate the reliability of the converter themselves and entire electronic systems. This problem on the surge and noise is one of the most serious difficulties in AC-to-DC converter. In the switching-mode power converter, the output voltage is generally controlled by varying the duty ratio of main switch. When a converter operates in steady state, duty ratio of the converter is kept constant. So the power of switching noise is concentrated in specific frequencies. Generally, to reduce the EMI and improve the immunity of converter system, the switching frequency of converter needs to be properly modulated during a rectified line period instead of being kept constant. Random Pulse Width Modulation (RPWM) is performed by adding a random perturbation to switching instant while output-voltage regulation of converter is performed. RPWM method for reducing conducted EMI in single switch three phase discontinuous conduction mode boost converter is presented. The more white noise is injected, the more conducted EMI is reduced. But output-voltage is not sufficiently regulated. This is the reason why carrier frequency selection topology is proposed. In the case of carrier frequency selection, output-voltage of steady state and transient state is fully regulated. A RPWM control method was proposed in order to smooth the switching noise spectrum and reduce it's level. Experimental results are verified by converter operating at 300V/1kW with 5%~30% white noise input. Spectrum analysis is performed on the Phase current and the CM noise voltage. The former is measured with Current Probe and the latter is achieved with LISN, which are connected to the spectrum analyzer respectively.

Development of a Damage Monitoring Technique for Jacket-type Offshore Structures using Fiber Bragg Grating Sensors (광섬유 브래그 격자 센서를 활용한 재킷식 해양구조물의 손상 감지 기법 개발)

  • Park, Hyun-Jun;Koo, Ki-Young;Yi, Jin-Hak;Yun, Chung-Bang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6A
    • /
    • pp.399-408
    • /
    • 2011
  • Development of smart sensors for structural health monitoring and damage detection has been advanced remarkably in recent years. Nowadays fiber optic sensors, especially fiber Bragg grating (FBG) sensors, have attracted many researchers' interests for their attractive features, such as multiplexing capability, durability, lightweight, electromagnetic interference immunity. In this paper, a damage detection approach of jacket-type offshore structures by principal component analysis (PCA) technique using FBG sensors are presented. An experimental study for a tidal current power plant structure as one of the jacket-type offshore structures was conducted to investigate the feasibility of the proposed method for damage monitoring. It has been found that the PCA technique can efficiently eliminate environmental effects from measured data by FBG sensors, resulting more damage-sensitive features under various environmental variations.