• Title/Summary/Keyword: Electromagnetic Absorption

Search Result 297, Processing Time 0.085 seconds

An Analysis of Natural Lacquer Characteristics and EM Absorber's Absorption Characteristics Using Natural Lacquer by Binder (옻의 특징과 옻을 지지재로 사용한 전자파 흡수체의 두께에 따른 흡수 특성 분석)

  • 최동한;김동일;김기만
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.29-34
    • /
    • 2004
  • Generally, a silicone rubber and a chloride polyethylene(CPE) have been used for the development of high-performance composite EM(ElectroMagnetic) wave absorbers. In this study, the EM wave absorption abilities for natural lacquer which is newly suggested in this study as a binder for composite EM wave absorbers were investigated to develop an improved EM wave absorbers. In addition, MnZn ferrite composite EM wave absorbers mixed with the natural lacquer were prepared and their absorption ability was also investigated. MnZn ferrite composite EM wave absorbers which employs the natural lacquer as a binder showed an improved EM wave absorption characteristics in comparison with the conventional binder such as a silicone rubber and a chloride polyethylene(CPE). The matching frequency and the absorption ability of EM wave absorbers mixed with natural lacquer can be controled the change of the thickness of them.

  • PDF

Measurement of Optical Properties of Nano-Cement Using THz Electromagnetic Waves (THz 전자기파를 이용한 나노시멘트 광학물성 측정)

  • Kim, Heonyoung;Kang, Donghoon;Oh, Seung Jae;Joo, Chulmin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.5
    • /
    • pp.363-369
    • /
    • 2016
  • Enhancing mechanical strength of concrete has been fascinated using carbon-based nanomaterials such as CNT and graphene. The key to improving strength is a dispersion of nanomaterials. A novel method is required to investigate the dispersion inner concrete nondestructively. In this study, the optical optical properties such as refractive index and absorption coefficient are measured in nano-cement mortar specimens containing MWCNT and GO using THz electro-magnetic waves. From the results, the properties of nano-cement mortar are confirmed to be 1.0% to 2.5% higher in refractive index, and -14% to 28% higher in absorption coefficient than those of cement mortar at the average values. Using these characteristics, visualizing the dispersion of nano-concrete structures seems possible in future.

Input Power Determination of TEM Cell Due to SAR for Mobile Phone Wave Blood Exposure (휴대폰 전자파의 혈액 조사를 위한 SAR별 TEM 셀의 입력 전력 산출)

  • Youn Ji-Hun;Son Tae-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.8 s.99
    • /
    • pp.810-814
    • /
    • 2005
  • Input power for TEM cell apparatus due to SAR(Specific Absorption Rate) for culture blood cell is determined by the transmission and reflection measurement of blood into the TEM cell. Blood cell with skin cell are reference culture cells for the study of EM wave effect. Exposure RF power from exposure apparatus to culture cell should not only exact for SAR value, but also should be based on the theoretical theory. In this paper, insertion loss of 50 g blood was measured to know exposure power per gram for culture blood cell, and input power of TEM cell due to SAR 0.8, 1.6, 3, 4 mW/g using the measured data are delivered. This study is for applying to EM wave exposure apparatus to culture cell.

Effects of 835-MHz Radiation on the Intracellular Calcium, Reactive Oxygen Species, and F-actin Polymerization in Rat-2 Fibroblasts

  • Hong Sae-Yong;Lee Zee-Won;Son Tae-Ho;Chang Sung-Keun;Choi Jong-Soon
    • Biomedical Science Letters
    • /
    • v.12 no.1
    • /
    • pp.9-16
    • /
    • 2006
  • We investigated the effects of 835-MHz electromagnetic field (EMF), one of the most popular communication frequency band in Korean code-division multiple-access (CDMA) mobile phone system, on cellular signal transduction. For this, we examined the change of intracellular calcium $([Ca^{2+}]_i)$, reactive oxygen species (ROS) and F-actin polymerization after exposure to 835-MHz EMF followed by the treatment of agonists in Rat-2 fibroblast cells. Culture cells were pretreated with serum-tree medium and concomitantly exposed to 835-MHz at specific absorption rate (SAR) of 4.0 W/kg for 24 hr in a specialized designed apparatus based on Transverse Electro Magnetics (TEM) wave theory. Intracellular $Ca^{2+}$ responses to lysophosphatidic acid (LPA) and epidermal growth factor (EGF) in Rat-2 fibroblast after exposure to 835-MHz EMF were shown to be similar pattern as observed in normal cultured cells. However, the LPA-induced calcium spiking was slightly delayed to 7 sec and sustained thereafter to a little higher ground level under 835-MHz EMF radiation compared to unexposed cells. ROS production level by LPA in the exposed cells was not different from that in control. Furthermore, LPA induced the production of stress fibers with no significant difference in the exposed and unexposed cells. These results suggest that mobile phone radiation (835-MHz, SAR 4.0 W/kg) may not be directly related to signal transduction in Rat-2 fibroblasts except the slight effect of calcium spiking in LPA-induced cells but remain to be further elucidated for possible indirect intervention.

  • PDF

Development of EM Wave Absorber for Suppression Noise from PCB Using Sendust and Mn-Zn Ferrite (Sendust와 Mn-Zn Ferrite를 이용한 PCB로부터의 전자파 방사 억제용 전파흡수체 개발)

  • Yoon, Sang-Gil;Kim, Dong-Il;Song, Young-Man;Park, Soo-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.2
    • /
    • pp.244-249
    • /
    • 2008
  • In this paper, we designed and fabricated the EM wave absorber consists of Sendust and Mn-Zn ferrite for suppressing EM wave noise from PCB in ISM(Industrial, Scientific and Medical) band of 2.4 GHz. We fabricated several samples in different ratios of Sendust to Mn-Zn ferrite with CPE(Chlorinated Ploy-ethylene) as binder and confirmed that optimum composition ratio of absorbing materials was Sendust. Mn-Zn ferrite : CPE=70:5:20 wt.%. The absorbing abilities were simulated according to different thickness of EM wave absorber as the function of material constants calculated by measured data. Measured absorption ability was analyzed and compared with simulated result. The simulated result agree well with the measured ones. As a result, the developed EM wave absorber with thickness of 0.85 mm has absorption ability of 5.4 dB at 2.4 GHz and over 3 dB in frequency rage of 1.4$\sim$4.1 GHz.

Agricultural Application of Ground Remote Sensing (지상 원격탐사의 농업적 활용)

  • Hong, Soon-Dal;Kim, Jai-Joung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.2
    • /
    • pp.92-103
    • /
    • 2003
  • Research and technological advances in the field of remote sensing have greatly enhanced the ability to detect and quantify physical and biological stresses that affect the productivity of agricultural crops. Reflectance in specific visible and near-infrared regions of the electromagnetic spectrum have proved useful in detection of nutrient deficiencies. Especially crop canopy sensors as a ground remote sensing measure the amount of light reflected from nearby surfaces such as leaf tissue or soil and is in contrast to aircraft or satellite platforms that generate photographs or various types of digital images. Multi-spectral vegetation indices derived from crop canopy reflectance in relatively wide wave band can be used to monitor the growth response of plants in relation to environmental factors. The normalized difference vegetation index (NDVI), where NDVI = (NIR-Red)/(NIR+Red), was originally proposed as a means of estimating green biomass. The basis of this relationship is the strong absorption (low reflectance) of red light by chlorophyll and low absorption (high reflectance and transmittance) in the near infrared (NIR) by green leaves. Thereafter many researchers have proposed the other indices for assessing crop vegetation due to confounding soil background effects in the measurement. The green normalized difference vegetation index (GNDVI), where the green band is substituted for the red band in the NDVI equation, was proved to be more useful for assessing canopy variation in green crop biomass related to nitrogen fertility in soils. Consequently ground remote sensing as a non destructive real-time assessment of nitrogen status in plant was thought to be useful tool for site specific crop nitrogen management providing both spatial and temporal information.

Design of a Compact MIMO Antenna for Smart Glasses (스마트 안경용 초소형 MIMO 안테나 설계)

  • Choi, Sehwan;Choi, Jaehoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.4
    • /
    • pp.351-354
    • /
    • 2017
  • In this paper, a compact MIMO(Multiple Input Multiple Output) antenna for smart glasses is proposed. The proposed MIMO antenna is designed using T-shaped isolator inserted between two closely located Inverted-F Antenna(IFA) and using two slots located in the ground for isolation enhancement and impedance matching characteristic. The proposed antenna has only the overall dimensions of $35mm{\times}9mm{\times}0.8mm$ and operates in the 2.4 GHz industrial, scientific, and medical(ISM) band. To verify human body effect, the phantom is used for antenna performance. The measured specific absorption rate(SAR) value is 1.38 W/kg with an input power of 18 dBm. The performance of the proposed antenna is compared with that of previous works for verification.

SAR Analysis on the Coaxial-Slot Antenna for Hyperthermia (Hyperthermia용 Coaxial-Slot 안테나의 SAR 분석)

  • Shin, Kook-Sun;Shin, Ho-Sub;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.7
    • /
    • pp.732-739
    • /
    • 2002
  • Performance of the applicator for hyperthermia is determined by both the degree of impedance matching and specific absorption rate(SAR) distribution in the surrounding tissue. In this paper, the coaxial-slot antenna using staircasing approximation in the FDTD is analyzed and the coaxial-slot antenna for the hyperthermia improving heating characteristics is designed. The SAR of the coaxial-slot antenna approximated to staircasing and square model is analyzed, and the SAR of staircasing model is compared with Saito's SAR measurement and square model. As a result, the SAR of proposed model exhibited agreement with the Saito's measurement of square model. Ig averaged SAR on the liver caused by proposed antenna in this paper is 195 W/kg, and is about 27.9 % higher than the Saito's antenna 152.5 W/kg, respectively.

A Study of Power Absorption in Human Head Exposed to Plane Wave (평면파에 노출된 인체 두부의 전력흡수 해석)

  • 이애경;조광윤;이혁재
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.6
    • /
    • pp.665-680
    • /
    • 1997
  • The specific absorption rate (SAR) distributions in various models of the human head have been analyzed when the models are exposed to 350 MHz and 900 MHz plane waves. The numerical analysis is performed with the finite-difference time-domain (FDTD) method. A homogeneous sphere including a cylinderical neck, a homogeneous head shaped model, and a heterogeneous realistic model are used as models of human head. The incident plane wave used for these calculations is propagating from the front to the back or from the back to the front of the head model, with its E-field vector orientation being parallel to the major length of the body. The specific findings are: 1) the average SARs of the three models are similar mutually but the local SARs of them differ greatly mutually; 2) the power is deposed more deeply in the head at 350 MHz, which is roughly the resonant frequency of a human head, than at 900 MHz; 3) for a plane wave propagating from the back, "hot spot" is found in the neck region, not in the head; 4) for a plane wave propagating from the front, "hot spot" is found in the nose at 900 MHz, and in the upper part of the lip and the jaw region at 350 MHz.

  • PDF

Guided Wave THz Spectroscopy of Explosive Materials

  • Yoo, Byung-Hwa;Kang, Seung-Beom;Kwak, Min-Hwan;Kim, Sung-Il;Kim, Tae-Yong;Ryu, Han-Cheol;Jun, Dong-Suk;Paek, Mun-Cheol;Kang, Kwang-Yong;Chung, Dong-Chul
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.1
    • /
    • pp.42-50
    • /
    • 2011
  • One of the important applications of THz time-domain spectroscopy (TDS) is the detection of explosive materials through identification of vibrational fingerprint spectra. Most recent THz spectroscopic measurements have been made using pellet samples, where disorder effects contribute to line broadening, which results in the merging of individual resonances into relatively broad absorption features. To address this issue, we used the technique of parallel plate waveguide (PPWG) THz-TDS to achieve sensitive characterization of three explosive materials: TNT, RDX, and HMX. The measurement method for PPWG THz-TDS used well-established ultrafast optoelectronic techniques to generate and detect sub-picosecond THz pulses. All materials were characterized as powder layers in 112 ${\mu}m$ gaps in metal PPWG. To illustrate the PPWG THz-TDS method, we described our measurement by comparing the vibrational spectra of the materials, TNT, RDX, and HMX, applied as thin powder layers to a PPWG, or in conventional sample cell form, where all materials were placed in Teflon sample cells. The thin layer mass was estimated to be about 700 ${\mu}g$, whereas the mass in the sample cell was ~100 mg. In a laboratory environment, the absorption coefficient of an explosive material is essentially based on the mass of the material, which is given as: ${\alpha}({\omega})=[ln(I_R({\omega})/I_S({\omega}))]m$. In this paper, we show spectra of 3 different explosives from 0.2 to 2.4 THz measured using the PPWG THz-TDS.