• Title/Summary/Keyword: Electrolyzed

Search Result 175, Processing Time 0.018 seconds

Effect of control measures on the contamination and growth inhibition of Listeria monocytogenes in Flammulina velutipes (팽이버섯 재배 농가에서 Listeria monocytogenes 오염과 성장억제를 위한 관리기술 효과)

  • Lee, Ha Kyoung;Jeon, Ji Hye;Lee, Ji Soo;Yoon, Seo Young;Kim, Won Young;Yoon, Ki Sun
    • Journal of Mushroom
    • /
    • v.20 no.2
    • /
    • pp.78-85
    • /
    • 2022
  • The consumption of Flammulina velutipes mushroom imported from Korea has been associated with the cases of listeriosis in the United States, Canada, and Australia. We investigated the effect of sanitizing the plastic wrapper (used in packaging F. velutipes) with slightly acidic electrolyzed water (SAEW) and ultraviolet C waterproof light-emitting diode (UVC-W-LED) on reducing the Listeria monocytogenes. Further, the effect of UVC-LED on L. monocytogenes growth in F. velutipes at different storage temperatures (2, 4, and 10℃) was determined. The combined (SAEW+UVC-W-LED) treatment for 5-10 min reduced 99.9% of bacterial population from the contaminated plastic wrapper. In addition, the UVC-LED treatment for 3 min reduced the L. monocytogenes concentration in F. velutipes by 0.47 log CFU/g. Moreover, the growth of L. monocytogenes in the treated mushrooms was slower than that of the untreated (control) ones. L. monocytogenes concentration in F. velutipes increased over 3 log CFU/g at 2℃ and 10℃ for 60 and 10 days, respectively. The growth of L. monocytogenes at the bottom of mushrooms was faster than that at the top at both the temperatures. These results indicate that the combined SAEW+UVC-W-LED treatment of plastic wrappers and the UVC-LED treatment of mushrooms can be used as potential hurdle technologies to control the risk of L. monocytogenes in mushrooms prior to packaging at farms.

Microbial Hazards and Microbe Reduction Technologies for Mushrooms (버섯의 미생물 위해성 및 저감화 처리기술 개발 현황)

  • Hyunji Song;Areum Han;Boyang Meng;A-Ra Jang;Ji-Yeon Kim;Sun-Young Lee
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.5
    • /
    • pp.287-296
    • /
    • 2023
  • Mushroom consumption is gradually growing annually worldwide for many centuries. Oyster mushrooms (Pleurotus ostreatus), button mushrooms (Agaricus bisporus), and enokitake (Flammulina filiformis) are mainly consumed in Korea. However, mushrooms can be contaminated with pathogenic microorganisms, such as Listeria monocytogenes, because antibacterial treatment during mushroom cultivation and processing is insufficient. Therefore, many cases of mushroom contamination-related foodborne illnesses and food recalls have been reported. Three representative treatments are used to prevent microbial contamination in mushrooms: chemical, physical, and combination treatments. Among the chemical treatments, chlorine compounds, peroxyacetic acid, and quaternary ammonium compounds are commercially used and ozone and electrolyzed water has recently been used. Additionally, physical treatments, including ultrasound, irradiation, and cold plasma, are being developed. Combination techniques include ultraviolet/chlorine compounds, ozone/organic acid, and ultrasound/organic acid. This review describes the domestically consumed mushroom types and their characteristics, and investigates the mushroom contamination levels. Additionally, effective antibacterial technologies for reducing microbial contamination in mushrooms are also discussed.

Effect of Physicochemical Treatment on Growth Inhibition of Hanseniaspora uvarum Y1 from Yogurt (물리·화학적 처리에 의한 요구르트 오염균의 생육 억제효과)

  • SunWoo, Chan;Lee, So-Young;Yoon, So-Young;Jung, Ji-Yeon;Kim, Koth-Bong-Woo-Ri;Lee, Chung-Jo;Kwak, Ji-Hee;Kim, Min-Ji;Kim, Dong-Hyun;Jung, Seul-A;Kim, Hyun-Jee;Ahn, Dong-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.12
    • /
    • pp.1781-1786
    • /
    • 2011
  • This study was conducted to investigate the cause of microbiological contamination in yogurt and evaluate the effect of physicochemical treatment on the growth inhibition of Hanseniaspora uvarum isolated from yogurt. The yeast strain Hanseniaspora uvarum Y1 was subjected to heat and pH treatments. H. uvarum Y1 was killed at $70^{\circ}C$ and $80^{\circ}C$ after 15 min and survived in a wide pH range from pH 2 to 9. However, it did not survive under pH 1 and over pH 10. In a disk diffusion susceptibility test on H. uvarum Y1, a clear zone (5 mm) of growth inhibition was observed upon treatment with electrolyzed water. The effect of ozone gas on the growth of H. uvarum Y1 was evaluated by viable cell count. Initial cell numbers of $10^2$ and $10^3$ CFU/mL of H. uvarum Y1 were completely killed by treatment for 10 and 30 min, respectively. H. uvarum Y1 was also sterilized by microwave treatment for 1 min. When treated with gamma-irradiation, the rate of killing of H. uvarum Y1 was proportional to the irradiation dose. and complete killing occurred at a dose of 50 kGy.

Study on Reduction of Microbial Contamination on Daruma by Combination Treatment of Strong Acidic Hypochlorous Water and Ultrasonic Waves (강산성차아염소산수와 초음파를 병용처리한 조미오징어 반가공품의 미생물 오염도 저감화에 관한 연구)

  • Chung, Won-Hee;Ko, Jun-Soo;Shin, Il-Shik
    • Journal of Food Hygiene and Safety
    • /
    • v.30 no.2
    • /
    • pp.166-172
    • /
    • 2015
  • This study was performed to develop treatment method for reducing microbial contamination on Daruma (a semi-processed product of seasoned and dried squid) by combination of strong acidic hypochlorous water (SAHW) and ultrasonic waves (UW). The available chlorine concentration, oxidation reduction potential (ORP) and pH of SAHW were $69.67{\pm}0.58ppm$, $1071.33{\pm}4.16mV$ and 2.79, respectively. The 1.49 log CFU/g of viable cell count and 1.32 log CFU/g of Staphylococcus aureus was reduced, and Escherichia coli was reduced below detection limit when the Daruma was treated with 20 times (w/v) of sodium hypochlorite solution (SHS) for 120 min. The 3.62 log CFU/g of viable cell count and 3.22 log CFU/g of Staphylococcus aureus was reduced, and Escherichia coli was reduced below detection limit when the Daruma was treated with 20 times (w/v) of SAHW for 120 min. The antibacterial effects of SAHW were stronger than those of SHS at same available chroline concentration. SAHW treatment after washing strongly alkalic electrolyzed water (SAEW) showed better bactericidal effects than SAHW treatment only. The 4.0 log CFU/g of viable cell count was reduced, S. aureus was reduced below regulation limit (Log 2.0 CFU/g), and E. coli was reduced below detection limit when the Daruma was treated with 20 times (w/v) of SAHW for 90 min after washing with 20 times (w/v) of SAEW for 60 min. The viable cell number was reduced below detection limit and S. aureus was reduced below regulation limit when the Daruma was treated with 20 times (w/v) of SAHW for 60 min in ultrasonic washer. E. coli was reduced below detection limit when the Daruma was treated with 20 times (w/v) of SAHW for 10 min in ultrasonic washer. These results suggest that combination of SAHW and UW may be a good technique to reduce the microbial contamination in daruma.

Growth Inhibition against Contaminants in Aseptic Chocolate Milk Using Physicochemical Methods (물리.화학적 처리에 의한 멸균 초콜릿 우유 오염균의 생육억제 효과)

  • Choi, Moon-Kyoung;Yoon, So-Young;Lee, So-Young;Kim, Koth-Bong-Woo-Ri;Lee, Chung-Jo;Jung, Ji-Yeon;Kwak, Ji-Hee;Kim, Min-Ji;Kim, Dong-Hyun;SunWoo, Chan;Lee, Ju-Woon;Byun, Myung-Woo;Ahn, Dong-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.8
    • /
    • pp.1157-1163
    • /
    • 2011
  • This study was conducted to investigate the cause of microbiological contaminants in aseptic chocolate milk and evaluate the effect of a physicochemical treatment on the growth inhibition of isolated bacterial strains. The bacterium isolated from aseptic chocolate milk was identified as Bacillus lentus and was named B. lentus M1. In the heat and pH treatment, the growth of B. lentus was inhibited at 110$^{\circ}C$ for >15 min and at pH's <5 and >10. An electrolyzed water treatment against B. lentus M1, revealed 5 mm growth past the inhibition zone. The effect of ozone gas on B. lentus M1 growth was evaluated using viable cell counts. When the initial number of B. lentus M1 was $10^2$ and $10^3$ CFU, the bacteria were completely suppressed by ozone gas treatment for 10 and 30 min, respectively. In a microwave treatment, B. lentus M1 was sterilized following microwave treatment for 1 min. As the result of ${\gamma}$-irradiation against B. lentus M1, numbers decreased as the ${\gamma}$-irradiation dosage increased. These results show the growth inhibition effects against contaminants in aseptic chocolate milk using physicochemical treatments.