• Title/Summary/Keyword: Electrolytic treatment

Search Result 166, Processing Time 0.025 seconds

Characteristics of Decomposition for Refractory Organic Compounds in Aqueous Solution by Sonolysis and Electrolysis (초음파와 전기분해를 이용한 수중의 난분해성 유기물질의 분해 특성)

  • Jeong, Jae-Baek;Lee, Seong-Ho;Bae, Jun-Ung
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.6
    • /
    • pp.454-463
    • /
    • 2006
  • refractory organic compounds in aqueous solution are not readily removed by the existing conventional wastewater treatment process. In recent years, the sonolysis and electrochemical oxidation process had been shown to be promising for wastewater treatment due to the effectiveness and easiness in operation. This study was performed to investigate the characteristics of sonolytic and electrolytic decomposition as the basic data for development of the wastewater treatment process. Trichloroethylene(TCE) and 2,4- dichlorophenol(2,4-DCP) were used as the samples, and their destruction efficiency were measured with various operating parameters, such as initial solution concentration, initial solution pH, reaction temperature, sonic power and current density. Also, the decomposition mechanism conformed indirectly with the effect of NaHCO3 as a radical scavenger on the decomposition reaction. Thermal decompositon reaction is predominant for TCE but thermal and radical decompositon reactions were dominant for 2,4-DCP. Results showed that the destruction efficiencies of all samples were above 65% within 120 minutes by sonolysis and electrolysis at the same time, and were increased with increasing initial concentration, sonic power and current density. Destruction efficiency of TCE was high in the acidic solution, but 2,4-DCP showed high destruction efficiency in basic solution.

Cleaning and Storage Effect of Electrolyzed Water Manufactured by Various Electrolytic Diaphragm (격막 방식에 따라 제조한 전해수의 세척 및 보관 효과)

  • 김명호;정진웅;조영제
    • Food Science and Preservation
    • /
    • v.11 no.2
    • /
    • pp.160-169
    • /
    • 2004
  • This study was carried out to investigate the efficacy of electrolyzed water manufactured with or without diaphragm on sterilization and preservation of cut-celery and shelled raw oyster. In cut-celery, total viable cell count and coliform group in the treatment of electrolyzed water were decreased to about 1/200∼1/1,000 level and about 1/100 level comparing non-treated ones. But moisture content, pH, hardness, vitamin C and residual chlorine content were showed a little difference among treatments up to 10 days at 10$^{\circ}C$. L and a color values were gradually increased in all treatments, and color differences($\Delta$E) were remarkable between treatment and untreatment sample. In overall acceptability, cut-celery treated with electrolyzed water showed somewhat higher score than that of other ones treated with tap water and 100 ppm NaClO solution until 5 days of storage. After 48 hours of storage, it was showed that VBN, total viable cell count and coliform count of shelled raw oyster treated with electrolyzed alkali water produced by non-diaphragm system are lower by about 3 mg%, 1∼2 log cycle and 2 log cycle respectively than that of ones treated with sea water. Total viable cell count of shelled raw oyster just after treatment was lower by about 1 log cycle than that of ones treated with sea water, and any significant increment was not found after 24∼48 hours of storage.

Effect of Hydride Reorientation on Delayed Hydride Cracking In Zr-2.5Nb Tubes

  • Yun Yeo Bum;Kim Young Suk;Im Kyung Soo;Cheong Yong Moo;Kim Sung Soo
    • Nuclear Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.529-536
    • /
    • 2003
  • The objective of this study is to investigate the reorientation of hydrides with applied stress intensity factor, the peak temperature and the time when to apply the stress intensity factor in a Zr-2.5Nb pressure tube during its thermal cycle treatment. Cantilever beam (CB) specimens with a notch of 0.5 mm in depth made from the Zr-2.5Nb tube were subjected to electrolytic hydrogen charging to contain 60 ppm H and then to a thermal cycle involving heating to the peak temperature of either 310 or $380^{\circ}C$, holding there for 50 h and then cooling to the test temperature of $250^{\circ}C$. The stress intensity factor of either 6.13 or $18.4\;MPa\sqrt{m}$ was applied at the beginning of the thermal cycle, at the end of the hold at the peak temperatures and after cooling to the test temperature, respectively. The reorientation of hydrides in the Zr-2.5Nb tube was enhanced with the increased peak temperature and applied stress intensity factor. Furthermore, when the CB specimens were subjected to $18.4\;MPa\sqrt{m}$ from the beginning of the thermal cycle, the reoriented hydrides occurred almost all over the Zr-2.5Nb tube, surprisingly suppressing the growth of a DHC crack. In contrast, when the CB specimens were subjected to the stress intensity factor at the test temperature, little reorientation of hydrides was observed except the notch region, leading the Zr-2.5Nb to grow a large DHC crack. Based on the correlation between the reorientation of hydrides and the DHC crack growth, a governing factor for DHC is discussed along with the feasibility of the Kim's DHC model.

Effects of PEO Conditions on Surface Properties of AZ91 Mg Alloy (PEO 처리조건에 따른 마그네슘 합금 AZ91의 표면특성변화에 관한 연구)

  • Park, Kyeong-Jin;Jung, Myung-Won;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.3
    • /
    • pp.71-77
    • /
    • 2010
  • Mg alloys have been used in automobile industry, aerospace, mobile phone and computer parts owing to low density. However, they have a restricted application because of low mechanical and poor corrosion properties. Thus, improved surface treatments are required to produce protective films. Environmental friendly Plasma Electrolytic Oxidation(PEO) was used to produce protective films on magnesium alloys. PEO process is combined electrochemical oxidation with plasma treatment in the aqueous solution. In this study, the effects of applied voltage and applied current on the surface morphologies were investigated. Also, the effects of Direct Current(DC) and Pulse Current(PC) were compared. PC and constant current control gave the dense coating on the Mg alloy. The potentiodynamic polarization tests were carried out for the analysis of corrosion properties of specimens. The surface hardness was 5 times higher than that of untreated AZ91D.

Corrosion Charateristics of PEO-treated Ti-6Al-4V Alloy in Solution Containing Si and Mg Ions

  • Park, Seon-Yeong;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.153-153
    • /
    • 2017
  • The application of the coating supports the mechanical characteristics of the implant, and various materials and coatings are currently being used in the implant in a way to accelerate adhesion. Especially, plasma electrolytic oxidation (PEO) coating has been proposed continually with good surface treatment of titanium alloys. Also, the PEO process can incorporate Ca and P ions on the titanium surface through variables varied factor. PEO process for bioactive surface has carried out in electrolytes containing Ca and P ions. Natural bone is composed of mineral elements such as Mg, Si, Zn, Sr, and Mn, etc. Especially, Mg and Si of these elements play role in bone formation and growth after clinical implantation of bio-implants. In this study, corrosion charateristics of PEO-treated Ti-6Al-4V alloy in solution containing Si and Mg ions has been investigated using several experimental techniques. The PEO-treated surfaces were identified by X-ray diffraction, using a diffractometer (XRD, Philips X' pert PRO, Netherlands) with Cu $K{\alpha}$ radiation. The morphology was observed by field-emission scanning electron microscopy (FE-SEM, Hitachi 4800, Japan) and energy-dispersive X-ray spectroscopy (EDX, Oxford ISIS 310, England). The potentiodynamic polarization and AC impedance tests for electrochemical degradations were carried out in 0.9% NaCl solution at similar body temperature using a potentiostat with a scan rate of 1.67mV/s and potential range from -1500mV to + 2000mV.

  • PDF

Electrochemical characteristics of Ca, P, Sr, and Si Ions from PEO-treated Ti-6Al-4V Alloy Surface

  • Yu, Ji-Min;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.154-154
    • /
    • 2017
  • Ti-6Al-4V alloys are widely used as metal-lic biomaterials in dentistry and orthopedics due to its excellent biocompatibility and me-chanical properties. However, because of low biological activity, it is difficult to form bone growth directly on the surface of titanium implants. For this reason, surface treatment of plasma electrolytic oxidation(PEO) was used for dental implants. To enhance bioac-tivity on the surface, strontium(Sr) and sili-con(Si) ions can be added to PEO treated sur-face in the electrolyte containing these ions. The presence of Sr in the coating enhances osteoblast activity and differentiation, where-as it inhibits osteoclast production and prolif-eration. And Si has been found to be essen-tial for normal bone, cartilage growth, and development. In this study, electrochemical characteristics of Ca, P, Sr, and Si ions from PEO-treated Ti-6Al-4V alloy surface was re-searched using various experimental instruments. DC power is used and Ti-6Al-4V al-loy was subjected to a voltage of 280 V for 3 minutes in the electrolyte containing 5, 10, 20M% Sr ion and 5M% Si ion. The morphol-ogies of PEO-treated Ti-6Al-4V alloy by electrochemical anodization were examined by field-emission scanning electron micro-scopes (FE-SEM), energy dispersive x-ray spectroscopy (EDS), x-ray diffraction (XRD) and corrosion analysis using AC impedance and potentiodynamic polarization test in 0.9% NaCl solution at similar body tempera-ture using a potentiostat with a scan rate of 1.67mV/s and potential range from -1500mV to + 2000mV.

  • PDF

Biocompatibility and Surface Characteristics of PEO-treated Ti-40Ta-xZr Alloys for Dental Implant Materials

  • Yu, Ji-Min;Cho, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.23-23
    • /
    • 2018
  • In this study, new titanium alloys were prepared by adding elements such as tantalum (Ta), zirconium (Zr) and the like to complement the biological, chemical and mechanical properties of titanium alloys. The Ti-40Ta-xZr ternary alloy was formed on the basis of Ti-40Ta alloy with the contents of Zr in the contents of 0, 3, 7 and 15 wt. %. Plasma electrolytic oxidation (PEO), which combines high-voltage sparks and electrochemical oxidation, is a novel method to form ceramic coatings on light metals such as Ti and its alloys. These oxide film produced by the electrochemical surface treatment is a thick and uniform porous form. It is also composed of hydroxyapatite and calcium phosphate-based phases, so it has the characteristics of bone inorganic, non-toxic and very high bioactivity and biocompatibility. Ti-40Ta-xZr alloys were homogenized in an Ar atmosphere at $1050^{\circ}C$ for 1 hour and then quenched in ice water. The electrochemical oxide film was applied by using a power supply of 280 V for 3 minutes in 0.15 M calcium acetate monohydrate ($Ca(CH_3COO)_2{\cdot}H_2O$) and 0.02 M calcium glycerophosphate ($C_3H_7CaO_6P$) electrolyte. A small amount of 0.0075M zinc acetate and magnesium acetate were added to the electrolyte to enhance the bioactivity. The mechanical properties of the coated surface of Ti-40Ta-xZr alloys were evaluated by Vickers hardness, roughness test, and elastic modulus using nano-indentation, and the surface wettability was evaluated by measuring the contact angle of the coated surface. In addition, cell activation and differentiation were examined by cell culture of HEK 293 (Human embryonic kidney 293) cell proliferation. Surface properties of the alloys were analyzed by scanning electron microscopy(FE-SEM), EDS, and X-ray diffraction analysis (XRD).

  • PDF

Bibliographic Studies on the Tetrodotoxin(TTX) (복어 독(Tetrodotoxin)에 관한 문헌적 고찰)

  • Hwang, Tae-Joon;Kwon, Gi-Rok;Choe, Ick-Seon
    • Journal of Pharmacopuncture
    • /
    • v.3 no.2
    • /
    • pp.1-25
    • /
    • 2000
  • We were trying to study the validity of Puffer fish's poison(Tetrodotoxin- TTX) to make a traditional Korean Medical treatment. The following conclusions were made after literary studies. 1. The first record of the puffer fish dates back 2000 years ago in the Chinese text Book of Mountain and Sea and other texts from the similar period. 2. Puffer fish's poison IS known as tetrodotoxin which is an amino perhydroquinazoline compound. It has a chemical formula of $C_{11}H_{17}N_3O_8$ in the hemiacetal structure and has the molecular weight of 319. 3. Tetrodotoxin (TTX) plays a role as potent neurotransmitter blocker by blocking the $Na^+$ -gate channel which hinders the influx of $Na^+$ ion into the cell. 4. Symptoms of the puffer fish poisoning ranges from blunted sense in the lips and tongue, occasional vomiting in the first degree to sudden descending of the blood pressure, apnea, and other critical conditions in the fourth degree. Intoxication of the puffer fish poison progresses at a rapid pace as death may occur after an hour and half up to eight hours in maximum. Typical death occurs after four to six hours. 5. Ways to treat the puffer fish poisoning include gastric irrigation, induce vomiting, purgation, intravenous fluid injection, and correcting electrolytic imbalance and acidosis. In cases of dyspnea, apply oxygen inhalation and conduct artificial respiration. 6. Tetrodotoxin (TTX) may be applied in treating brain disorders, ocular pain, excess pain in the large intestine and ileum, and relieving tension of the skeletal museles, neuralgia, rheumatism, arthritis, and etc. 7. In terms of Oriental medicine, the puffer fish poison has characteristics of sweet, warm, and poisonous. It's known efficacies are to tonify weakness, dispel damp, benefit the lower back, relieve hemorrhoid, kills parasites, remove edema, and so forth. And the puffer fish eggs processed with ginger are said to be effective against tuberculosis and lung cancer, thus, it's validity must be investigated and further research should be followed.

Behavior of Macrosegregation and Precipitation Developed in Semi-continuously Cast Large Bloom (반연속주조된 대형 블룸에서 발생하는 거시편석 및 석출물 거동)

  • Kim, Hyeju;Lee, Hyoungrok;Kim, Kyeong-A;Lee, Joodong;Oh, Kyung-sik;Kwon, Sang-Hum;Kim, Donggyu
    • Journal of Korea Foundry Society
    • /
    • v.39 no.1
    • /
    • pp.7-13
    • /
    • 2019
  • Few studies of large blooms over 700 mm thick among those used for the forging of raw materials have been reported. The cooling rate difference between the surface and the center of a large bloom is large, and the degradation of the mechanical properties is likely in cases involving excessively coarse precipitates resulted from the slow cooling rate of a large bloom after casting. Therefore, a schematic investigation of the growth behaviors of precipitates while varying their locations in blooms is necessary. The dissolution behaviors of precipitates were investigated by simulating a reheating process during which the bloom is heated to a high temperature. The segregation behavior of the as-cast large bloom was also investigated. Reheating specimens were obtained after an isothermal heat treatment at $1150^{\circ}C$ with various holding times to simulate the reheating process, with the samples undergoing a subsequent water quenching step. The precipitates were extracted using an electrolytic extractor and a particle size analysis was conducted with the aid of SEM, EDS, and TEM. In the present work, Al oxide, MnS and Nb carbide were mainly observed.

Sludge reduction by Enzyme Pretreatment (효소 전처리를 통한 슬러지 저감)

  • 김정래;심상준;최수형;염익태
    • KSBB Journal
    • /
    • v.19 no.2
    • /
    • pp.93-97
    • /
    • 2004
  • We investigate the effect of enzyme pretreatment using protease, carbohydrase, and lipase on improvement of sludge treatment efficiency by measuring SCOD and TCOD. The enzyme-pretreatment increases SCOD of excess sludge. In addition, the amount of sludge reduction during digestion, in terms of SCOD and TCOD, are enhanced by enzyme-pretreatment. Among pretense, carbohydrase, and lipase, pretense showed the best enhancement of the sludge treatment efficiency. Sludge digestion followed by ozone and enzyme treatments showed more effective sludge treatment when compared with ozone treatment alone. Therefore, we expect that enzyme pretreatment can be used as a useful tool for enhancing the sludge treatment efficiency.