• Title/Summary/Keyword: Electrolytic characteristics

Search Result 187, Processing Time 0.028 seconds

A Study on the Grinding Characteristics of Stainless Steel with Optimum In-process Electrolytic Dressing (최적 연속 전해드레싱을 적용한 스테인레스 강의 연삭 특성에 관한 연구)

  • 이은상;김정두
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.5
    • /
    • pp.29-37
    • /
    • 1998
  • In recent years, grinding techniques for precision machining of stainless steel used in shaft, screw parts and clear value have been improved by using the superabrasive wheel and precision grinding machine. The completion of optimum dressing of superabrasive wheel makes possible the effective precision grinding of stainless steel. However, the present dressing system cannot have control of optimum dressing of the superabrasive wheel. In this study, a new system and the grinding mechanism of optimum in-process dressing of superabrasive wheel. Therefore, the optimum in-process electrolytic dressing is a good method to obtain the efficiency and mirror-like grinding of stainless steel (STS304)

  • PDF

Characteristics of Electrolytic Treatment for Chromium and Cyanide containing Wastewater (크롬과 시안이 공존하는 폐수의 전해처리 특성)

  • 정일현;윤용수
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.3
    • /
    • pp.85-92
    • /
    • 1998
  • In this study, the electrolytic treatment by one-stage electrolysis was investigated for electroplating wastewater containing $Cr^{6+}$ and $CN^{-}$. From the results, we concluded as follows : Optimum initial pH of wastewater was pH : 3. Amount of optimum addition of electroltyte(NaCl) was 0.1 wt%. Optimum potential for electrolysis was 5 volt. Concentration and removal efficiency for $Cr^{6+}$ and $CN^{-}$ were under 1 mg/L and above 99% at optimum conditions. And the feasibility of electrolytic treatment for electroplating wastewater containing $Cr^{6+}$ and $CN^{-}$ was certified.

  • PDF

A Study on the Cylindrical Grinding Technology by Electrolytic In-Process Dressing(ELID) Method (전해인프로세스드레싱법에 의한 초정밀 원통 연삭기술 연구)

  • Je, Tae-Jin;Lee, Eung-Suk
    • 연구논문집
    • /
    • s.28
    • /
    • pp.59-71
    • /
    • 1998
  • The ELID(electrolytic in-process dressing) grinding method is a new precision grinding technique with the special electrolytic in-process dressing by metal bonded grinding wheel, fluid, and power supply. It is possible to make a efficient precision machining of hard and brittle materials such as ceramics, hard metals, and quenched steels by using this method, In this study, a new efficient precision grinding method with ELID was attempted for application to the machining and finishing processes of cylindrical structural components. And, we try to develop the cylindrical grinding technique for mirror surface of ceramics, tungsten carbide and SCM steel, and for the high efficiency grinding of machined parts, for example, ball screw shaft. Electrical characteristics of three different wheel grit sizes of #325, #2000 and #4000 were investigated experimentally. ELID grinding method is proved to be useful for mirror surface generation and efficient machining.

  • PDF

Effective Electrolytic Water Generation Characteristics by Overlapped Multi-layer Electrode (중첩형 다단전극에 의한 효율적인 전해 이온수 발생 특성)

  • Shin, Dong-Hwa;Hwang, Deok-Hyun;Jung, Jae-Seung;Kim, Hyung-Pyo;Kim, Jin-Gyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.3
    • /
    • pp.59-64
    • /
    • 2016
  • Applications of electrolytic ion water generated by the oxidation-reduction have gradually been expanded due to their strong sterilizing power and a surface active force. We demonstrate the effect of the multi-layer type electrode for effective ion water generation. The multi-layer type electrode has ability to generate stronger acid and alkali water by increase of the electrode reactive area. Also power consumption efficiency enhances because the electrodes disposed in middle position of the reactive cell raise the usage rate by overlapped effect as an electrolysis electrode.

The Characteristics of Electrolyte Temperature and Current Density on Selective Jet Electrodeposition (선택적 금속 전착에 대한 전해질 온도 및 전류밀도 영향분석)

  • Park, Chan-Kyu;Kim, Sung-Bin;Kim, Young-Kuk;Yoo, Bongyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.6
    • /
    • pp.400-404
    • /
    • 2018
  • A metal 3D printer has been developed on its own to electrodeposit the localized area. Nozzles were used to selectively laminate the electrolytic plating method. To analyze the factors affecting the deposition, the stack height, thickness and surface roughness were experimentally analyzed according to the current density and the temperature of the electrolyte. Electrolytic temperature and current are electrodeposited when the deposition conditions are dominant over the etching conditions, but the thickness is kept constant. On the contrary, when the etching conditions are dominant, the electrodeposited shape is rather the etched. As a result, the uniformity of surface quality and electrodeposition rate could be improved by conducting experiments under constant conditions of electrolyte temperature and current density.

Relationships between Wheel Velocity and Surface Roughness in the Electrolytic In-Process Dressing(ELID) Grinding (전해드레싱연삭에서 숫돌주속과 표면거칠기의 관계)

  • 차명섭
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.459-464
    • /
    • 2000
  • In this paper, it verifies the relationships between wheel velocity and surface roughness with the mirror surface grinding using electrolytic in-process dressing (ELID). In the general, as wheel velocity is high, surface roughness is better on the base of grinding theory. However, the relationships between wheel velocity and surface roughness is undefined due to the effect of electro-chemical dressing and the characteristics of materials. According to above relationships, ELID grinding experiment is carried out by following the change of wheel velocity. As the result of this study, it is found that surface roughness is not better as linearly as the increase of wheel velocity, but the limit of wheel velocity exists according to the characteristics of materials. Also, in contradiction to the present trend of high wheel velocity of manufacturing system for high surface integrity, it is able to expected to the base on the development of new ultra precision grinding method with the practicality of mirror surface grinding using ELID grinding method.

  • PDF

A Study on the Wear Resistance Characteristics of Anodic Oxide Films Formed on Aluminium alloy using a Plasma Electrolytic Oxidation (플라즈마 전해산화법에 의해 형성된 알루미늄 합금의 양극산화피막 내마모 특성에 관한 연구)

  • Jung, Woo-Chul;Jin, Yun-Ho;Choi, Jin-Ju;Yang, Jae-Kyo
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.6
    • /
    • pp.381-386
    • /
    • 2018
  • In this study, plasma electrolytic oxidation (PEO) method was used to from anodic oxide films on Al alloy and their resistance and morphological characteristics were investigated as a function of film formation voltage and treatment time. Cross-sectional morphology and composition of the PEO films were analyzed by SEM (Scanning Electron Microscopy) and EDS (Energy Dispersive Spectroscopy). The PEO films showed increased surface roughness and thickness with of film formation voltage and treatment time. The wear resistance was found to be the best for the PEO film formed for 5 min at 500V which is attributed to be denser structure relatively and lower surface roughness.

Characteristics of a Titanium-oxide Layer Prepared by Plasma Electrolytic Oxidation for Hydrogen-ion Sensing

  • Lee, Do Kyung;Hwang, Deok Rok;Sohn, Young-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.76-80
    • /
    • 2019
  • The characteristics of a titanium oxide layer prepared using a plasma electrolytic oxidation (PEO) process were investigated, using an extended gate ion sensitive field effect transistor (EG-ISFET) to confirm the layer's capability to react with hydrogen ions. The surface morphology and element distribution of the PEO-processed titanium oxide were observed and analyzed using field-emission scanning-electron microscopy (FE-SEM) and energy-distribution spectroscopy (EDS). The titanium oxide prepared by the PEO process was utilized as a hydrogen-ion sensing membrane and an extended gate insulator. A commercially available n-channel enhancement MOS-FET (metal-oxide-semiconductor FET) played a role as a transducer. The responses of the PEO-processed titanium oxide to different pH solutions were analyzed. The output drain current was linearly related to the pH solutions in the range of pH 4 to pH 12. It was confirmed that the titanium-oxide layer prepared by the PEO process could feasibly be used as a hydrogen-ion-sensing membrane for EGFET measurements.