• Title/Summary/Keyword: Electrolytic characteristics

Search Result 187, Processing Time 0.021 seconds

A Study on Ultra-precision Lapping of Ceramics with In-Process Electrolytic Dressing (연속 전해드레싱을 적용한 세라믹재의 초정밀 래핑에 관한 연구)

  • 이은상
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.5
    • /
    • pp.34-39
    • /
    • 2000
  • Application of ceramics has grown considerably due to significant improvement in their mechanical properties such as light weight, chemical stability and superior wear resistance. Despite these character, the use of ceramics has not increased because of poor machinability. The method of using of super-abrasives metal bond wheel was proposed. But it is difficult that super-abrasives metal bond wheel can be dressed. Recently, the technology of in-process electrolytic dressing is developed to solve this problem. If this method is applied, loading and glazing are disappeared apparently. The aim of this study is to determine the machining characteristics in terms of lapping wheel speed, machining time, pressurized weight to the workpiece and peak current using in-process electrolytic dressing applied to the CIB-diamond lapping wheel to achieve ultra-precision lapping machining technique.

  • PDF

Failure Prediction Monitoring of DC Electrolytic Capacitors in Half-bridge Boost Converter (단상 하프-브리지 부스트 컨버터에서 DC 전해 커패시터의 고장예측 모니터링)

  • Seo, Jang-Soo;Shon, Jin-Geun;Jeon, Hee-Jong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.4
    • /
    • pp.345-350
    • /
    • 2014
  • DC electrolytic capacitor is widely used in the power converter including PWM inverter, switching power supply and PFC Boost converter system because of its large capacitance, small size and low cost. In this paper, basic characteristics of DC electrolytic capacitor vs. frequency is presented and the real-time estimation scheme of ESR and capacitance based on the bandpass filtering is adopted to the single phase boost converter of uninterruptible power supply to diagnose its split dc-link capacitors. The feasibility of this real-time failure prediction monitoring system is verified by the computer simulation of the 5[kW] singe phase PFC half-bridge boost converter.

Preparation of Conduction Polymer for Solid Type Aluminum Electrolytic Capacitor (알미늄 고체 전해 커패시터용 도전성 고분자막의 제조)

  • 양성현;유광균;이기서
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.3
    • /
    • pp.528-531
    • /
    • 1994
  • Digitalization in electronic system is required the capacitor which have a large capacitance with small size, low impedance at high frequency, and high reliability. The fabrication and its properties of aluminum solid electrolytic capacitor are investigated. Employing conduction polymer film such as, polypyrrole as solid electroylte, solid type aluminum electrolytic capacitors were made. The surface of insulationg oxide is covered with conducting polymer layer prepared by chemical oxidative polymerization. Thereafter this conducting layer is covered with conducting polymer prepared by electrochemical polymerization. The dielectric properties of these capacitors were also measured and discussed. Regarding on frequency characteristics of the trial made capacitor, impedance and ESR at high frequency is lower than those of the stacked type film capacitor. It is alo confirmed that temperature coefficient of capacitance and dissipation factor of the capacitor are lower than those of film capacitor and liquid type aluminum electrolytic capacitor.

Characteristics of Plasma Electrolytic Oxide Coatings on Mg-Al Alloy with Coating Time (피막처리 시간에 따른 Mg-Al 합금의 플라즈마 전해 산화 피막 특성)

  • Lee, Du-Hyung;Kim, Bo-Sik;Chang, Si-Young
    • Korean Journal of Materials Research
    • /
    • v.18 no.5
    • /
    • pp.241-246
    • /
    • 2008
  • Pure Mg and Mg-6wt.%Al alloy were coated by the plasma electrolytic oxidation with various coating times and the microstructural and mechanical characteristics of the coatings were investigated. The coatings on pure Mg and Mg-6wt.%Al alloy consisted of MgO and $Mg_2SiO_4$. The surface roughness and thickness of the coatings became larger as the coating time increased. The coatings on the Mg-6wt.%Al alloy were more uniform and thicker than those on pure Mg. The microhardness and friction coefficient of the coatings increased progressively as the coating time increased. In addition, the coatings on the Mg-6wt.%Al alloy compared to pure Mg showed improved microhardness and a better friction coefficient.

ED-drilling of WC-Co to Minimize Electrolytic Corrosion on a Workpiece Surface (방전드릴링 시 발생하는 초경합금의 표면전해부식 방지)

  • Song, Ki-Young;Chung, Do-Kwan;Park, Min-Soo;Chu, Chong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.8
    • /
    • pp.47-54
    • /
    • 2009
  • In this study, a simple and effective method was proposed to minimize electrolytic corrosion on the workpiece during ED-drilling using water as a working fluid. The adhesion of a cover plate onto the surface of the workpiece was greatly effective for suppressing electrolytic corrosion during ED-drilling. The experiment revealed that the adhesion of the cover plate prevented corrosion without causing significant changes in machining characteristics. Using the machining method proposed in this paper, electrolytic-corrosion-free holes can be machined without change in the machinery system. By using corrosion-free hole as a start hole for wire EDM, a lead frame die with high quality was fabricated successfully.

Reference Model Updating of Considering Disturbance Characteristics for Fault Diagnosis of Large-scale DC Bus Capacitors (대용량 직류버스 커패시터의 고장진단을 위한 외란특성 반영의 레퍼런스 모델 개선)

  • Lee, Tae-Bong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.4
    • /
    • pp.213-218
    • /
    • 2017
  • The DC electrolytic capacitor for DC-link of power converter is widely used in various power electronic circuits and system application. Its functions include, DC Bus voltage stabilization, conduction of ripple current due to switching events, voltage smoothing, etc. Unfortunately, DC electrolytic capacitors are some of the weakest components in power electronics converters. Many papers have proposed different algorithms or diagnosis method to determinate the ESR and tan ${\delta}$ capacitance C for fault alarm system of the electrolytic capacitor. However, both ESR vary with frequency and temperature. Accurate knowledge of both parameters at the capacitors operating conditions is essential to achieve the best reference data of fault alarm. According to parameter analysis, the capacitance increases with temperature and the initial ESR decreases. Higher frequencies make the reference ESR with the initial ESRo value to decrease. Analysis results show that the proposed DC Bus electrolytic capacitor reference ESR model setting technique can be applied to advanced reference signal of capacitor diagnosis systems successfully.

A development of Diagnosis Monitoring System for UPS DC Link Capacitors using Zigbee Wireless Communication (Zigbee 무선통신을 이용한 UPS DC링크 커패시터의 고장 모니터링 시스템 개발)

  • Kim, Dong-Jun;Shon, Jin-Geun;Jeon, Hee-Jong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.1
    • /
    • pp.41-46
    • /
    • 2012
  • Electrolytic power capacitors have been widely used in power conversion system such as inverter or UPS because of characteristics of large capacitance, high-voltage and low-cost. The electrolytic capacitor, which is most of the time affected by the aging effect, plays a very important role for the power-electronics system quality and reliability. Therefore it is important to diagnosis monitoring the condition of an electrolytic capacitor in real-time to predict the failure. In this paper, the on-line remote diagnosis monitoring system for UPS DC link electrolytic capacitors using low-cost single-chip zigbee communication modules is developed. To estimate the health status of the capacitor, the equivalent series resistor(ESR) of the component has to be determined. The capacitor ESR is estimated by using RMS computation using BPF modeling of DC link ripple voltage/current. Zigbee-based hardware experimental results show that the proposed remote capacitor diagnosis monitoring system can be applied to UPS successfully.

A Study on Plasma Electrolytic Oxidation Surface Treatments for Magnesium Alloy Eyeglass Frames (마그네슘 합금 안경테의 Plasma Electrolytic Oxidation 표면처리 효과 연구)

  • Kim, Ki-Hong
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.15 no.4
    • /
    • pp.313-317
    • /
    • 2010
  • Purpose: The purpose of this study was to investigate the surface characteristics of plasma electrolytic oxidation (PEO) surface treatment on AZ31 magnesium alloy eyeglass frames. Methods: The plasma electrolytic oxidation (PEO) surface was created by varying the DC voltage. The oxidation layer of coating was measured using phase analysis by X-ray diffraction. The microstructural morphology was observed using a scanning electron microscopy. Coating layer and the concentration of elements were investigated using the energy dispersive X-ray spectra. Results: The MgO XRD peak was increased as the voltage increased, and the density of the surface oxide film was also increased. The changes in the composition of the EDS also showed a good agreement. Conclusions: The compound oxide crystallization of PEO oxide film layer was done by increasing formation of MgO as the voltage increased. The treatment at 65V and 60 sec showed the best results at surface state, contact angles and salt spray test.

Odor Emission from Sediments in Sewer Systems and Odor Removal using an Electrolytic Oxidation Process (하수관거에 퇴적된 유기물에 의한 악취 발생과 산화전리시스템을 이용한 악취 저감)

  • Ahn, Hae-Young;Shin, Seung-Kyu;Song, Ji-Hyeon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.6
    • /
    • pp.703-710
    • /
    • 2011
  • Odor emission from domestic sewer systems has become a serious environmental problem. An investigation on a sewer manhole revealed that anaerobic decay of sediment organic matters (SOMs) and related declines of oxidation reduction potential (ORP) in the sediment layer were the main reason of the production of volatile sulfur compounds. In addition, as the anaerobic decaying period continued, the odor intensity rapidly increased with increasing concentrations of $H_2S$ and dimethyl sulfide. As a feasible method to control SOMs and to minimize odor emission potentials, an electrolytic oxidation process has been employed to the sediment sludge phase. In this study, voltages applied to the electrolytic oxidation process were varied as a main system parameter, and its effects on odor removal efficiencies and reaction characteristics were investigated. At the applied voltages greater than 20 V, the system efficiently oxidized the organic matter, and the ORP in the sludge phase increased rapidly. As a consequence, the removal efficiency of hydrogen sulfide was found to be >99% within 60 minutes of the electrolytic oxidation. Overall, the electrolytic oxidation process can be an alternative to control odor emission from sewer systems, and a threshold input energy needs to be determined to achieve effective operation of the process.

Removal of nitrogen and sulfur odorous compounds and their precursors using an electrolytic oxidation process (산화전리수를 이용한 질소와 황 계열 악취 및 악취전구물질의 제거)

  • Shin, Seung-Kyu;An, Hea-Yung;Kim, Han-Seung;Song, Ji-Hyeon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.2
    • /
    • pp.223-230
    • /
    • 2011
  • An electrolytic oxidation process was applied to remove odorous compounds from non-point odor sources including wastewater pipelines and manholes. In this study, a distance between the anode and the cathode of the electrolytic process was varied as a system operating parameters, and its effects on odor removal efficiencies and reaction characteristics were investigated. Odor precursors such as sediment organic matters and reduced sulfur/nitrogen compounds were effectively oxidized in the electrolytic process, and a change in oxidation-reduction potential (ORP) indicated that an stringent anaerobic condition shifted to a mild anoxic condition rapidly. At an electrode distance of 1 cm and an applied voltage of 30 V, a system current was maintained at 1 A, and the current density was 23.1 $mA/cm^{2}$. Under the condition, the removal efficiency of hydrogen sulfide in gas phase was found to be 100%, and 93% of ammonium ion was removed from the liquid phase during the 120 minute operating period. Moreover, the sulfate ion (${SO_4}^{2-}$) concentration increased about three times from its initial value due to the active oxidation. As the specific power consumption (i.e., the energy input normalized by the effective volume) increased, the oxidation progressed rapidly, however, the oxidation rate was varied depending on target compounds. Consequently, a threshold power consumption for each odorous compound needs to be experimentally determined for an effective application of the electrolytic oxidation.