• 제목/요약/키워드: Electrolytic Coagulation

검색결과 4건 처리시간 0.015초

중금속폐수에서 구리의 전기화학적 침전처리 (Electrochemical Precipitation Treatment of Copper from an Heavymetal Wastewater)

  • 김재우;이재동;이우식;지은상
    • 한국환경보건학회지
    • /
    • 제23권3호
    • /
    • pp.1-6
    • /
    • 1997
  • This research was conducted in the laboratory to investigate an alternative of Copper(Cu) removal from an heavymetal wastewater using the electrochemical precipitation(ECP) process. The ECP unit consisted of an electrolytic cell made of Titanium plate and Steel plate representing anode and cathode. The DC power source applied to the ECP unit had electrical potential(E) of 50$\pm$ 1V, respectively. The synthetic wastewater used in the experiments contained Cu in the 10 mg/l concentration and the electrode separation were 2, 3, 4 cm and the initial pH were 3, 6, 9, 12, and electrolytic concentration were 0.005, 0.0125, 0.025, 0.0375 mole, and the real heavymetal wastewater used in the experiments. From the experiment for removal efficiency according to pH variation, the low pH area doesn't give the coagulation effect by Ti(OH)$_4$ because process interfere with the coagulation and oxidation reaction, therefore the optimum pH was 4-7. The removal rate was 97.75% after the lapse of 30 minutes when copper concentration and electrolytic concentration were respectively 10 mg/l and 0.025 mole. The removal rate was 96.41% after the lapse of 30minutes when the real heavymetal wastewater used. The optimum consumption of power showed 27KWh/m$^3$ when copper concentration, electrolyte concentration and cell potential were respectively 10 mg/l, 0.025 mole and 50$\pm$ 1 Volt.

  • PDF

Efficiency of Aluminum and Iron Electrodes for the Removal of Heavy Metals [(Ni (II), Pb (II), Cd (II)] by Electrocoagulation Method

  • Khosa, Muhammad Kaleem;Jamal, Muhammad Asghar;Hussain, Amira;Muneer, Majid;Zia, Khalid Mahmood;Hafeez, Samia
    • 대한화학회지
    • /
    • 제57권3호
    • /
    • pp.316-321
    • /
    • 2013
  • Electrocoagulation (EC) technique is applied for the treatment of wastewater containing heavy metals ions such as nickle (Ni), lead (Pb) and cadmium (Cd) by using sacrificial anodes corrode to release active coagulant flocs usually aluminium or iron cations into the solution. During electrolytic reactions hydrogen gas evolve at the cathode. All the experiments were carried out in Batch mode. The tank was filled with synthetic wastewater containing heavy metals and efficiency of electro-coagulation in combination with aluminum and iron electrodes were investigated for removal of such metals. Several parameters, such as contact time, pH, electro-coagulant concentration, and current density were optimized to achieve maximum removal efficiency (%). The concentrations of heavy metals were determined by using Atomic Absorption Spectroscopy (AAS). It is found that the electro-coagulation process has potential to be utilized for the cost-effective removal of heavy metals from wastewater specially using iron electrodes in terms of high removal efficiencies and operating cost.

입자상 알루미늄 충전복극전해조에 의한 불소제거 (Fluoride Removal by Granular Aluminium Bipolar Packed Bed Electrolytic Cell)

  • 하지영;박정훈;우성훈;박승조
    • 대한환경공학회지
    • /
    • 제29권6호
    • /
    • pp.684-688
    • /
    • 2007
  • 입자상 알루미늄 충전 복극전해조를 이용하여 불소함유 수용액을 정전위 전해한 결과를 아래에 요약하였다. 이온크로마토그래피로 전해 시료를 분석한 결과 인가전압 1, 5, 10 V에서 불소이온 제거율은 각각 53, 73, 90%이었다. 지지전해질농도를 10, 30, 50, 70 mg/L로 조절하고 알루미늄 충전율을 0, 25, 50, 75%로 충전 후 전기량을 측정한 결과 지지전해질 농도가 50 mg/L일 때와 충전율이 75%일 때에 전기량이 $2.58A{\cdot}hr$이었다. 불소농도를 30, 50, 70 mg/L로 하여 10 V에서 3시간 전해실험 한 결과 불소제거율이 각각 93.3, 80.0, 68.6%이었고 전기량은 2.59, 3.89, $5.43A{\cdot}hr$이었다. 또한 단위전기량 당 불소 제거량은 불소농도 30, 50, 70 mg/L 에서 4.0, 3.5, $2.0mg/A{\cdot}hr$이었다.

영가철 충진 컬럼을 이용한 연속적인 물리화학적 수중 인 제거 (Continuous removal of phosphorus in water by physicochemical method using zero valent iron packed column)

  • 정주영;안병민;김정주;박주양
    • 상하수도학회지
    • /
    • 제27권4호
    • /
    • pp.439-444
    • /
    • 2013
  • Excessive phosphorus in aquatic systems causes algal bloom resulting in eutrophication, DO depletion, decline in recreational value of water and foul tastes. To treat wastewater containing phosphorus including effluent of wastewater treatment plant, the continuous experiments were performed by using electrochemical way. The spherical ZVI and silica sand which act as physical filter are packed at appropriate volume ratio of 1:2. Electric potential is applied externally which can be changed as per the operational requirement. The results indicate that optimum hydraulic retention time of 36 minutes (10 mL/min at 1 L reactor) was required to meet the effluent standards. Lower concentrations of phosphorus (<10 mg/L as phosphate) were removed by precipitation by contact with iron. Thus, additional electric potential was not required. In order to remove high concentration phosphorus around 150 mg/L as phosphate, external electric potential of 600 V was applied to the reactor.