• Title/Summary/Keyword: Electrolytic

Search Result 994, Processing Time 0.048 seconds

Odor Emission from Sediments in Sewer Systems and Odor Removal using an Electrolytic Oxidation Process (하수관거에 퇴적된 유기물에 의한 악취 발생과 산화전리시스템을 이용한 악취 저감)

  • Ahn, Hae-Young;Shin, Seung-Kyu;Song, Ji-Hyeon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.6
    • /
    • pp.703-710
    • /
    • 2011
  • Odor emission from domestic sewer systems has become a serious environmental problem. An investigation on a sewer manhole revealed that anaerobic decay of sediment organic matters (SOMs) and related declines of oxidation reduction potential (ORP) in the sediment layer were the main reason of the production of volatile sulfur compounds. In addition, as the anaerobic decaying period continued, the odor intensity rapidly increased with increasing concentrations of $H_2S$ and dimethyl sulfide. As a feasible method to control SOMs and to minimize odor emission potentials, an electrolytic oxidation process has been employed to the sediment sludge phase. In this study, voltages applied to the electrolytic oxidation process were varied as a main system parameter, and its effects on odor removal efficiencies and reaction characteristics were investigated. At the applied voltages greater than 20 V, the system efficiently oxidized the organic matter, and the ORP in the sludge phase increased rapidly. As a consequence, the removal efficiency of hydrogen sulfide was found to be >99% within 60 minutes of the electrolytic oxidation. Overall, the electrolytic oxidation process can be an alternative to control odor emission from sewer systems, and a threshold input energy needs to be determined to achieve effective operation of the process.

Removal of nitrogen and sulfur odorous compounds and their precursors using an electrolytic oxidation process (산화전리수를 이용한 질소와 황 계열 악취 및 악취전구물질의 제거)

  • Shin, Seung-Kyu;An, Hea-Yung;Kim, Han-Seung;Song, Ji-Hyeon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.2
    • /
    • pp.223-230
    • /
    • 2011
  • An electrolytic oxidation process was applied to remove odorous compounds from non-point odor sources including wastewater pipelines and manholes. In this study, a distance between the anode and the cathode of the electrolytic process was varied as a system operating parameters, and its effects on odor removal efficiencies and reaction characteristics were investigated. Odor precursors such as sediment organic matters and reduced sulfur/nitrogen compounds were effectively oxidized in the electrolytic process, and a change in oxidation-reduction potential (ORP) indicated that an stringent anaerobic condition shifted to a mild anoxic condition rapidly. At an electrode distance of 1 cm and an applied voltage of 30 V, a system current was maintained at 1 A, and the current density was 23.1 $mA/cm^{2}$. Under the condition, the removal efficiency of hydrogen sulfide in gas phase was found to be 100%, and 93% of ammonium ion was removed from the liquid phase during the 120 minute operating period. Moreover, the sulfate ion (${SO_4}^{2-}$) concentration increased about three times from its initial value due to the active oxidation. As the specific power consumption (i.e., the energy input normalized by the effective volume) increased, the oxidation progressed rapidly, however, the oxidation rate was varied depending on target compounds. Consequently, a threshold power consumption for each odorous compound needs to be experimentally determined for an effective application of the electrolytic oxidation.

The Explosion Prevention Method for Electrolytic Motor Start Capacitors using Current Characteristic (통전전류 특성을 이용한 모터 기동용 전해 커패시터 폭발 방지 방법)

  • Kim, Jae-Hyun;Park, Jin-Young;Park, Kwang-Muk;Bang, Sun-Bae;Kim, Yong-Un
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1836-1843
    • /
    • 2017
  • In this paper, we investigated fire cases those are believed to be caused by explosion of a electrolytic motor start capacitor. Using two types of commercially available electrolytic motor start capacitors, capacitor current and the possibility of capacitor explosion were tested. And the ignition possibility of the internal material leaked from a capacitor was also tested. In addition, experiments were conducted to see if the fire could spread when a capacitor was exposed to an external flame. From our test we observed that the current of the electrolytic motor start capacitor rose continuously to a certain level by product, if the capacitor was continuously energized with working voltage, and then the capacitor was exploded. The gas and liquid leaked from the capacitor by the explosion could ignite by an electric arc and an external flame. The capacitor current at explosion was different product by product, but each product had a certain current level at explosion. And the increase rate of the capacitor current until explosion was 24% and 31% for the products used in the experiment. We proposed the capacitor explosion prevention method that cuts off power when the capacitor current rises to a certain threshold level. The proposed method can be used if the current of the applied electrolytic motor start capacitor rises continuously and then the capacitor is exploded at a certain current level when the capacitor is energized continuously.

Electrolytic Treatment of Ammonium Nitrogen and Nitrate Nitrogen by Bipolar Packed Bed Electrolytic Cell (충전복극전해조에 의한 암모니아성 및 질산성 질소의 전해처리)

  • Yun, Churl-Jong;Yu, Hyun-Chul;Kim, Jung-Sup;Lee, Bong-Seob;Kawk, Myoung-Hwa;Park, Seung-Cho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.7
    • /
    • pp.686-689
    • /
    • 2005
  • This study was conducted to investigate the effect of ammonium and nitrate nitrogen removal to applied voltage, electrolytic time and activated carbon packing height. Batch bipolar packed bed electrolytic cell reactor was packed with $4{\times}8$ mesh granular activated carbon (GAC). Afterward electrolysis was performed in 20 V for 30 min. As a result, as the filling height adjusted to 80 mm high, the removal efficiency of ammonium nitrogen was 99.9%. and as the electrolytic time varied to 60 min, the removal efficiency of ammonium nitrogen was 97.6%. and in case of continuous electrolytic treatment of ammonium and nitrate nitrogen removal efficiency of total nitrogen was over 80% in bipolar packed bed electrolytic cell reactor for 72 hours as the packing height, sample concentration and input rate of sample adjusted to 280 mm, 30 mg/L, 6.7 mL/min, respectively.

Equivalent Scattering Area Model of Optical Dot Gain (광학적 망점확대의 상당산란면적 모델에 관한 연구)

  • 강상훈
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.12 no.1
    • /
    • pp.43-55
    • /
    • 1994
  • To investigate relations between Grain-shape of plate and Dot-Gain in the lithography, Printing plates were made by Mechanical Grain, Brush Grain and Electrolytic Grain method.Fine multi-grain by electrolytic method of them resulted in less Dot-grain on the paper, more damping water on the none image part of printing plate.

  • PDF