• Title/Summary/Keyword: Electrolytic

Search Result 994, Processing Time 0.028 seconds

Weight Reduction Properties of PET Fabrics Treated with Electrolytic Reduction Water (전해환원수에 의한 폴리에스테르 직물의 감량가공 특성)

  • Ro Duck-Kil;Hong Young-Ki;Bae Kie-Seo
    • Textile Coloration and Finishing
    • /
    • v.17 no.5 s.84
    • /
    • pp.37-44
    • /
    • 2005
  • The electrolytic water(EW) has been used in agriculture, medical, semiconductor, and household fields. However there has been no use of EW in the textile process so far, because the application in the textile industry has been needed a large amount of EW in real process conditions. Recently, we have got electrolytic oxidation water(EOW) and electrolytic reduction water(ERW) by development of a electricity electron technology. And, the productivity of EW manufacture apparatus is arrived to large capacity. As a result, the application of EW could be possible in the textile industry. In this study, to confirm the possibility of application of EW, we scoured and hydrolyzed PET fabric using the EW. It was possible that the application of ERW for the scouring and hydrolysis of PET fabrics in the textile process.

Development of lapping wheel for Electrolytic Dressing and evaluation of performance (전해 드레싱용 래핑지석의 개발 및 성능평가)

  • 송지복;이은상;최재영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.858-861
    • /
    • 2000
  • Application of ceramics, carbide, ferrite has grown considerably due to significant improvement in their mechanical properties such as light weight chemical stability super wear resistance and electronical. Despite these character, the use of hi-tech material has not increased because of poor machinability. The method of using of metal bond wheel was proposed. But it is difficult that metal bond wheel can be dressed. Recently, the technology of in-process electrolytic dressing is developed to solve this problem. This method need wheel for electrolytic dressing, power supply and electrolyte. But development of wheel for electrolytic dressing is the most need. The aim of this study is development of wheel for electrolytic and appraisement of CIB-diamond lapping wheel

  • PDF

A Study on the Development of In-Processor Dressing Lapping Wheel and its Evaluation of Machining Characteristics (연속 전해드레싱용 래핑숫돌 개발 및 성능평가)

  • Choe, Jae-Yeong;Lee, Eun-Sang;Song, Ji-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.132-137
    • /
    • 2001
  • Application of ceramics, carbide, ferrite has grown considerably due to their mechanical properties such as high degree hardness, chemical stability, super wear resistance. Despite these characters, the use of advanced material has not increased because of poor machinability. The application of metal bonded wheel was proposed. But it is difficult that metal bond wheel can be dressed. Recently, to solve this problem, the technology of in-process electrolytic dressing is developed. This method need wheel for electrolytic dressing, power supply and electrolyte. The aim of this study is development of CIB-D wheel for electrolytic and its evaluation of electrolytic characteristics, and achieve ultra-precision lapping of carbide, optic glass.

  • PDF

Electrolytic Treatment of Emulsified Oily Wastewater Using DSA Electrode (I) - Batch Treatment - (DSA 전극을 사용한 에멀젼 함유폐수의 전해처리 (I) -회분식 전해처리-)

  • 김인수;송영채
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.2 no.1
    • /
    • pp.67-75
    • /
    • 1996
  • An innovative batch electrolytic system consisted of electrolytic basin, which was equipped with DSA(Dimensionally Stable Anode) type insoluble electrode, Ti/IrO2 anode and H-C metal cathode, and flotation separator was developed for the efficient treatment of shipboard emulsified oily wastewater. The electorod cleance and current density of elecrolytic basin to ensure maximum treatment efficiency of oily wastewater was evaluated as 6 mm, 3 A/dm3, respectively. The electrolytic efficiency of oily wastewater was affected by the operationtemperature, and it means that the temperature controller to ensure the stabiity of the process is required. The conductivity in the electrolytic basin was increased with the percentage of sea water in the oily wastewater, and over 90% of treatment efficiency of oily wastewater could be obtained at 7% of sea water. The oil removal rate was increased according to the increase of the quantity of electricity, and the maximum value of electrilyic rate constant was 288 mgoil/A.min. The information obtained from this study might be used for development of an efficient continuous electrolytic system treating the emulsified oily wastewater.

  • PDF

A Simple Capacitance Estimation Method for Failure Diagnosis of DC Link Electrolytic Capacitor in Power Converters (전력변환기에 대한 직류링크 커패시터의 고장진단을 위한 간단한 용량 추정 기법)

  • Shon, Jin-Geun;Kim, Dong-Joon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.4
    • /
    • pp.378-383
    • /
    • 2010
  • Due to the large capacity and low cost, DC link electrolytic capacitors with of energy storage and voltage regulation are used for almost all types of power converter as the DC/AC inverter or DC/DC converter. Electrolytic capacitor, which is the most of the time affected by the aging effect, plays very important role for the power converter system quality and reliability. Therefore, this paper proposes a simple method to estimate the capacitance variation of an electrolytic capacitor in order to analyze the internal characteristic decrease and worn-out state of an electrolytic capacitor. Simulation results by using capacitor storage energy computation show the validity of the proposed capacitance estimation method.

A Simple ESR Measurement Method for DC Bus Capacitor Using DC/DC Converter (DC/DC 컨버터를 이용한 DC Bus 커패시터의 간단한 ESR 측정 기법)

  • Shon, Jin-Geun;Kim, Jin-Sik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.4
    • /
    • pp.372-376
    • /
    • 2010
  • Electrolytic capacitors have been widely used in power electronics system because of the features of large capacitance, small size, high-voltage, and low-cost. Electrolytic capacitors, which is most of the time affected by aging effect, plays a very important role for the power electronics system quality and reliability. Therefore it is important to estimate the parameter of an electrolytic capacitor to predict the failure. The estimation of the equivalent series resistance(ESR) is important parameter in life condition monitoring of electrolytic capacitor. This paper proposes a simple technique to measure the ESR of an electrolytic capacitor. This method uses a switching DC/DC boost converter to measure the DC Bus capacitor ESR of power converter. Main advantage of the proposed method is very simple in technique, consumes very little time and requires only simple instruments. Simulation results are shown to verify the performance of the proposed method.

Characteristics of Electrolytic Ion Water Generation due to the electrical-conductivity of a liquid medium (액상 매질의 전기전도도 변화에 의한 전해이온수 발생 특성)

  • Shin, Dong-Hwa;Ju, Jae-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.4
    • /
    • pp.257-263
    • /
    • 2017
  • The following thesis researched into the characteristics of electrolytic ion water with different levels of electrical conductivity by adding NaCl into tap water which is for experimental use in multi-layered electrolytic ion water generator. Electrolytic ion water is generated by underwater electrolysis and the electrolysis generator has a simple structure, is easy to control and is highly utilized in industries. Electrolytic ion water is useful in many areas since it has a superior sterilizing power, has no possibility of secondary pollution itself as water and removes active oxygen. In the experiment, we used tap water with NaCl excluded and water with three different levels of electrical conductivity by changing NaCl concentration levels into three levels. The features of current and voltage in electrolytic ion water represented a form of quadric instead of the linear characteristic following ohm's law. As well, as the electric conductivity of water and applied voltage increased, we were able to generate much stronger acid water and alkali water.

A Study on Chemical Cleaning of Electrolytic Facilities with Sea Water (해수전해설비의 화학세정 최적화 방안에 관한 연구)

  • 이한철;이창우;현성호
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.4
    • /
    • pp.114-119
    • /
    • 1999
  • When NaOCl was generated and put into sea-water cooling machine in order to overcome the biological hindrances against sea-water cooling machine, it was converted into metallic ion, particularly Ca and Mg, as a hydrate in sea-water and is to stick to electrolyte as a side reaction. This phenomena make the distance between the electrolytes narrow to decrease the flow rate, which induces the local vortex flow which erodes the pole plate. Moreover, this increases the resistance of the electrolyte as well as voltage to decrease the electrolytic efficiency, which has curtailed a chlorine yield and caused a pole plate cut. We are able to overcome these problems by chemical cleaning and intend to extend the life-time of electrolyte and to increase output of the sea-water electrolysis facilities by studying optimal policy regarding chemical cleaning of electrolytic cell. Cleaning time of electrolytic facilities is determined when both increase in electrolytic efficiency and decrease in pole-plate voltage are 10%. At this time as operating current of electrolytic facilities is high, operating time is diminished. Whereas, parameter of end point determination according to cleaning is Mg ionic concentration in solution. When we use Cleaner as a 7wt% HCl, cleaning time is about 80min proper. We are able to maintain pole plate performance by protecting against pole plate cut by means of electrolytic by-product, improve operating rate of facilities, and cut down on maintenance expenditure after acidic cleaning.

  • PDF

Investigation on Electrolytic Corrosion Characteristics with the Variation of Current Density of 5083-H321 Aluminum Alloy in Seawater (5083-H321 알루미늄 합금의 해수 내 전류밀도의 변화에 따른 전식 특성 연구)

  • Kim, Young-Bok;Kim, Seong-Jong
    • Journal of Surface Science and Engineering
    • /
    • v.52 no.1
    • /
    • pp.23-29
    • /
    • 2019
  • Electrolytic corrosion of the ship's hull can be occurred due to stray current during welding work using shore power and electrical leakage using shore power supply. The electrolytic corrosion characteristics were investigated for Al5083-H321 through potentiodynamic polarization and galvanostatic corrosion test in natural seawater. Experiments of electrolytic corrosion were tested at various current densities ranging from $0.01mA/cm^2$ to $10mA/cm^2$ for 30 minutes, and at various applied time ranging from 60 to 240 minutes. Evaluation of electrolytic corrosion was carried out by Tafel extrapolation, weight loss, surface analysis after the experiment. In the electrolytic corrosion characteristics of Al5083-H321 as the current density increased, the surface damage tended to proportionally increase. In the current density of $0.01mA/cm^2$ for a applied long time, the damage tended to grow on the surface. In the case of $10mA/cm^2$ current density for a applied long time, the damage progressed to the depth direction of the surface, and the amount of weight loss per hour increased to 4 mg/hr.

Effect of Compounding Electrolytic Machining in Ball End Milling (볼엔드밀 절삭가공에서 전해복합의 효과)

  • 주종길;박규열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1025-1028
    • /
    • 2001
  • In this report, a new method compounding the electrolytic machining with ball end milling process to increase the machining efficiency was introduced. From the experimental result, it was confirmed that effect of cutting force reduction and finer surface roughness can be obtained in a certain condition of ball end milling and electrolytic machining conditions.

  • PDF