• Title/Summary/Keyword: Electrolyte density

검색결과 704건 처리시간 0.028초

양극산화에 의한 다공성 알루미나 막의 기체투과 특성 (Gas Permeation Characteristics of Porous Alumina Membrane Prepared by Anodic Oxidation)

  • 함영민
    • 환경위생공학
    • /
    • 제13권3호
    • /
    • pp.72-78
    • /
    • 1998
  • For investigation into gas permeation characteristics, the porous alumina membrane with asymmetrical structure, having upper layer with 10 nanometer under of pore diameter and lower layer with 36 nanometer of pore diameter, was prepared by anodic oxidation using DC power supply of constant current mode in an aqueous solution of sulfuric acid. The aluminium plate was pre-treated with thermal oxidation, chemical polishing and electrochemical polishing before anodic oxidation. Because the pore size depended upon the electrolyte, electrolyte concentration, temperature, current density, and so on, the the membranes were prepared by controling the current density, as a very low current density for upper layer of membrane and a high current density for lower layer of membrane. By control of current quantity, the thicknesses of upper layer of membranes were about $6{\;}{\mu}m$ and the total thicknesses of membranes were about $80-90{\;}{\mu}m$. We found that the mechanism of gas permeation depended on model of the Knudsen flow for the membrane prepared at each condition.

  • PDF

고체산화물 전해질 직접탄소 연료전지의 전극 및 집전부 재질이 출력밀도에 미치는 영향 (Effects of anode and current collector materials on the power density of solid oxide electrolyte direct carbon fuel cell)

  • 황준영;윤재은;강경태;김종훈;이병준
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.392-394
    • /
    • 2009
  • Direct Carbon Fuel Cells (DCFCs) generates electricity directly converting the chemical energy in coal. In the present study, effects of anode and current collector materials on the power density of DCFC are investigated experimentally. The adopted DCFC system is combined type of solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) with the use of a liquid-molten salt anode and a solid oxide electrolyte, proposed by SRI. Power densities of 25 mm button cells with various combination of anode materials and current collector materials are measured.

  • PDF

Potential Profiles and Capacitances of an Ideally Polarizable Electrode/Hard Sphere Electrolyte System

  • Kim, Sang-Youl;Vedam, K.
    • Bulletin of the Korean Chemical Society
    • /
    • 제11권6호
    • /
    • pp.487-493
    • /
    • 1990
  • A complete potential profile of an electrical double layer is calculated from a distribution function of charged particles based upon a model where the effect of a charged electrode and the finite size of ion are explicitly included. Electrons which are distributed on the electrode surface are assumed not to penetrate the electrode/electrolyte boundary. Formation of the constant density regions and their effects on potential and the electrical double layer capacitances are studied in great detail. The distribution of surface electrons as well as the constant density regions are found to be essential in characterizing the electrical double layer. The introduction of the ion size into the prior electrical double layer model of an ideally polarizable electrode/point charged electrolyte system, shows a great improvement in its characteristics mostly at negative potential region.

염소이온 함유된 용액에서 Ti합금의 부식특성에 미치는 Hafnium함량의 영향 (Effects of Hafnium Addition on the Pitting Corrosion Behavior of Ti Alloys in Electrolyte Containing Chloride Ion)

  • 김성환;최한철
    • Corrosion Science and Technology
    • /
    • 제11권5호
    • /
    • pp.191-195
    • /
    • 2012
  • The aim of this study was to investigate effects of hafnium content on the corrosion behavior of Ti alloys in electrolyte containing chloride ion. For this study, Ti-Hf binary alloys contained 10 wt%, 20 wt% and 30 wt% Hf were manufactured in a vacuum arc-melting furnace and subjected to heat treatment for 12h at $1000^{\circ}C$ in an argon atmosphere. The pitting corrosion behavior of the specimens was examined through potentiodynamic and potentiostatic tests in 0.9 wt% NaCl electrolyte at $36.5{\pm}1^{\circ}C$. The corrosion morphology of Ti-xHf alloys was investigated using optical microscopy (OM) and X-ray diffractometer (XRD). From the optical microstructures and XRD results, needle-like martensite ($\alpha$') phases of the Ti-xHf alloys increased with an increase of Hf addition. Corrosion current density $(I_{corr})$ and current density $(I_{300mV})$ in passive region decreased, whereas, corrosion potential increased with Hf content. At the constant potential ($300mV_{SCE}$), current density decreased as time increased.

산성 전해질 기반의 전기 이중층 커패시터용 흑연 집전체의 전기화학적 안정성 평가 (Evaluation of Electrochemical Stability of Graphite Current Collector for Electric Double Layer Capacitor Based on Acid Electrolyte)

  • 박시진;안건형
    • 한국재료학회지
    • /
    • 제31권5호
    • /
    • pp.272-277
    • /
    • 2021
  • Owing to its low cost, easy fabrication process, and good ionic properties, aqueous supercapacitors are under strong consideration as next-generation energy storage devices. However, the limitation of the current collector is its poor electrochemical stability, leading to low energy storage performance. Therefore, a reasonable design of the current collector and the acidic electrolyte is a necessary, as well as interfacial engineering to enhance the electrochemical performance. In the present study, graphite foil, with excellent electrochemical stability and good electrical properties, is suggested as a current collector of aqueous supercapacitors. This strategy results in excellent electrochemical performance, including a high specific capacitance of 215 F g-1 at a current density of 0.1 A g-1, a superior high-rate performance (104 F g-1 at a current density of 20.0 A g-1), and a remarkable cycling stability of 98 % at a current density of 10.0 A g-1 after 9,000 cycles. The superior energy storage performance is mainly ascribed to the improved ionic diffusion ability during cycling.

An ionic liquid incorporated gel polymer electrolyte for double layer capacitors

  • Perera, Kumudu S.;Prasadini, K.W.;Vidanapathirana, Kamal P.
    • Advances in Energy Research
    • /
    • 제7권1호
    • /
    • pp.21-34
    • /
    • 2020
  • Energy storage devices have received a keen interest throughout the world due to high power consumption. A large number of research activities are being conducted on electrochemical double layer capacitors (EDLCs) because of their high power density and higher energy density. In the present study, an EDLC was fabricated using natural graphite based electrodes and ionic liquid (IL) based gel polymer electrolyte (GPE). The IL based GPE was prepared using the IL, 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (1E3MITF) with the polymer poly(vinyl chloride) (PVC) and the salt magnesium trifluoromethanesulfonate (Mg(CF3SO3)2 - MgTF). GPE was characterized by electrochemical impedance spectroscopy (EIS), DC polarization test, linear sweep voltammetry (LSV) test and cyclic voltammetry (CV) test. The maximum room temperature conductivity of the sample was 1.64 × 10-4 Scm-1. The electrolyte was purely an ionic conductor and the anionic contribution was prominent. Fabricated EDLC was characterized by EIS, CV and galvanostatic charge discharge (GCD) tests. CV test of the EDLC exhibits a single electrode specific capacitance of 1.44 Fg-1 initially and GCD test gives 0.83 Fg-1 as initial single electrode specific discharge capacitance. Moreover, a good stability was observed for prolonged cycling and the device can be used for applications with further modifications.

반구형 부스바를 이용한 전해연마액 수명연장을 위한 공정 최적화 (Process Optimization for Life Extension of Electropolishing Solution using Half Round Bus Bar)

  • 김수한;이승헌;조재훈;임동하;최중소;박철환
    • 한국표면공학회지
    • /
    • 제49권5호
    • /
    • pp.447-453
    • /
    • 2016
  • In this study, we intended to extend the life of electropolishing solution through the reduction of electric resistance by improving the electrolysis efficiency. The optimum conditions were obtained by half round bus bar and Taguchi method. As the main control factors in the electropolishing process, current density, polishing time, electrolyte temperature and flow rate were selected. The electrolyte temperature was the most significant to the electrolysis efficiency. The optimum conditions for the life extension of electropolishing solution were as follows: current density, $45A/dm^2$; polishing time, 6 min; electrolyte temperature, $70^{\circ}C$; flow rate, 11 L/min. As a results of ANOVA of SN ratios, it was found that the electrolyte temperature was significant factor at the 90% confidence level.

Electrolyte 가 Bow-tie 형 수트리에 미치는 영향 (Effect of electrolyte on Bow-tie Water tree)

  • 강태오;양우영;김관성;전찬오
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 C
    • /
    • pp.1550-1552
    • /
    • 1994
  • In order to investigate the effect of electrolyte solutions on the activities of bow-tie water trees in XLPE insulated power cable, we have tried to observe the characteristics on water treeing ( bow-tie type ) using several electrolyte solutions such as $CH_3COOH$, $MgCl_2$,HCl and NaCl solution and tap water. Bow-tie tree density in $CH_3COOH$ and $MgCl_2$ solution was higher than in any other solution, and the growth of tree was stimulated in NaCl and $CH_3COOH$ solution, and diffusion of bow-tie trees into insulation in $MgCl_2$, HCl and NaCl solutions was faster than in $CH_3COOH$ solution and water. Also, although the increase of applied voltage caused bow-tie tree density to be high, it didn't affect the growth of tree maximum length noticeably.

  • PDF

Zn-Al系 復合電氣鍍金에 미치는 電解條件의 影響 (The Effect of Electrolysis Condition on the Zinc-Aluminum Composite Electro Plating)

  • 예길재;강식성;안덕수
    • 한국표면공학회지
    • /
    • 제20권3호
    • /
    • pp.118-126
    • /
    • 1987
  • The Zn-Al composite electroplating was studied by using chloride zinc bath containing metal hydroxides $(Zn(OH)_2,\;Al(OH)_3))$ and aluminium powder. The size of Al powder codeposited in the beaker bath with Al powder of-400 mesh was under 10${\mu}m$. The Zn-Al composite was electro-deposited at 40$^{\circ}C$ in the ranges of current density of 5-50 A/$dm^2$ in the flowing electrolyte. The content of aluminium particles codeposited increased slightly with increasing flow rate of electrolyte from 0.5 m/sec to 1.0 m/sec, and decreased with increasing current density from 5 A/$dm^2$ to 50 A/$dm^2$. The content of aluminium particles codeposited by using the electrolyte containing zinc hydroxide(0.1M) was 2~4 wt%. The Al powder was codeposited mainly near the surface layer of the electrodeposits. The dissolution rate of aluminium particles in the electrolyte containing 0.1M $Zn(OH)_2$ and Boric acid was 0.41 g/l. day in comparison with 1.5 g/l. day dissolution rate in pure chloride bath.

  • PDF

Anode-supported Type SOFCs based on Novel Low Temperature Ceramic Coating Process

  • Choi, Jong-Jin;Ahn, Cheol-Woo;Kim, Jong-Woo;Ryu, Jungho;Hahn, Byung-Dong;Yoon, Woon-Ha;Park, Dong-Soo
    • 한국세라믹학회지
    • /
    • 제52권5호
    • /
    • pp.338-343
    • /
    • 2015
  • To prevent an interfacial reaction between the anode and the electrolyte layer during the conventional high-temperature co-firing process, an anode-supported type cell with a thin-film electrolyte was fabricated by low-temperature ceramic thick film coating process. Ni-GDC cermet composite was used as the anode material and YSZ was used as the electrolyte material. Open circuit voltage and maximum power density were found to strongly depend on the surface uniformity of the anode functional layer. By optimizing the microstructure of the anode functional layer, the open circuit voltage and maximum powder density of the cell increased to 1.11 V and $1.35W/cm^2$, respectively, at $750^{\circ}C$. When a GDC barrier layer was applied between the YSZ electrolyte and the LSCF cathode, the cell showed good stability, with almost no degradation up to 100 h. Anode-supported type SOFCs with high performance and good stability were fabricated using a coating process.