• Title/Summary/Keyword: Electrolyte additive

Search Result 128, Processing Time 0.026 seconds

Properties of electrodeposited copper foil by organic compounds (유기물 첨가에 의한 전해동박의 특성)

  • Lee, K.W.;No, S.S.;Choi, C.H.;Kim, S.K.;Son, S.H.;Moon, H.K.;Park, D.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.88-91
    • /
    • 2001
  • The mechanical properties and surface luminous intensities of copper foil have been studied with variation of the amount of additives into the electrolyte. Especially, organic compound of HEC was added from 0.1 to 10ppm for the propose of increasing the mechanical property and the surface state. The total thickness of electrodeposited copper foil was decreased with increasing the amount of organic compounds. There was not so much significant effect of the current density. It has been observed that mechanical property and surface luminous intensity increase with increasing concentration of organic compounds.

  • PDF

Effective Approaches to Preventing Dendrite Growth in Lithium Metal Anodes: A Review

  • Jaeyun Ha;Jinhee Lee;Yong-Tae Kim;Jinsub Choi
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.365-382
    • /
    • 2023
  • A lithium metal anode with high energy density has the potential to revolutionize the field of energy storage systems (ESS) and electric vehicles (EVs) that utilize rechargeable lithium-based batteries. However, the formation of lithium dendrites during cycling reduces the performance of the battery while posing a significant safety risk. In this review, we discuss various strategies for achieving dendrite-free lithium metal anodes, including electrode surface modification, the use of electrolyte additives, and the implementation of protective layers. We analyze the advantages and limitations of each strategy, and provide a critical evaluation of the current state of the art. We also highlight the challenges and opportunities for further research and development in this field. This review aims to provide a comprehensive overview of the different approaches to achieving dendrite-free lithium metal anodes, and to guide future research toward the development of safer and more efficient lithium metal anodes.

High Performance Electrode of Polymer Electrolyte Membrane Fuel Cells Prepared by Direct Screen Printing Process (직접 스크린 프린팅법으로 제조된 고분자 전해질 연료전지의 고성능 전극)

  • 임재욱;최대규;류호진
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.1
    • /
    • pp.65-69
    • /
    • 2004
  • Screen printing it one of the most popular methods for the fabrication of catalytic layer in electrode of polymer electrolyte membrane fuel cells (PEMFCs) due to its convenience and adaptability. This paper suggests an improved screen-printing method, which is rather simple suppressing the swelling trouble without additive process and competitive with very low Pt loading in comparison with the previous methods. Particularly, the gasket unified MEA made better performances than the other especially at high current area due to blocking effect on the gas leakage during the operation. These methods give us more simplified and faster fabrication chances.

  • PDF

Enhancement of Quick-Charge Performance by Fluoroethylene Carbonate additive from the Mitigation of Electrode Fatigue During Normal C-rate Cycling

  • Tae Hyeon Kim;Sang Hyeong Kim;Sung Su Park;Min Su Kang;Sung Soo Kim;Hyun-seung Kim;Goojin Jeong
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.369-376
    • /
    • 2023
  • The quick-charging performance of SiO electrodes is evaluated with a focus on solid electrolyte interphase (SEI)-reinforcing effects. The study reveals that the incorporation of fluoroethylene carbonate (FEC) into the SiO electrode significantly reduced the electrode fatigue, which is from the the viscoelastic properties of the FEC-derived SEI film. The impact of FEC is attributed to its ability to minimize the mechanical failure of the electrode caused by additional electrolyte decomposition. This beneficial outcome arises from volumetric stain-tolerant characteristics of the FEC-derived SEI film, which limited exposure of the bare SiO surface during 0.5 C-rate cycling. Notably, FEC greatly improves Li deposition during quick-charge cycles following aging at 0.5 C-rate cycling due to its ability to maintain a strong electrical connection between active materials and the current collector, even after extended cycling. Given these findings, we assert that mitigating SEI layer deterioration, which compromises the electrode structure, is vital. Hence, enhancing the interfacial attributes of the SiO electrode becomes crucial for maintaining kinetic efficiency of battery system.

Properties of Capacity on Carbon Electrode in EC : MA Electrolyte II. Effect of Additives on Initial Irreversible Capacity (EC : MA 혼합전해질에서 카본 전극의 용량 특성 II. 초기 비가역 용량에 대한 첨가제의 효과)

  • Park, Dong-Won;Kim, Woo-Seong;Son, Dong-Un;Choi, Yong-Kook
    • Applied Chemistry for Engineering
    • /
    • v.17 no.6
    • /
    • pp.575-579
    • /
    • 2006
  • Solid electrolyte interface is formed on a carbon electrode used as an anode in Li-ion battery, which can be of $Li^{+}$ intercalation/deintercalation during the first cycle. The passivation film formed by a solvent decomposition during the initial charge process affects cell performance and it was one of the main reason of an initial irreversible capacity. This paper describes the use, for the first time, of $Li_2CO_3$ as the additive for the formation of a passivation film on the carbon surface to suppress the initial irreversible reaction. Chronopotentiometry, cyclic voltammetry, and impedance spectroscopy were used to investigate the effects of the $Li_{2}CO_{3}$ additive. Scanning electron microscopy, energy dispersive X-ray analysis, and X-ray diffraction were also used to monitor changes in the surface morphology and composition of the passivation film formed by solvent decomposition and the precipitation of $Li_{2}CO_{3}$. The addition of $Li_{2}CO_{3}$ to a solution of 1 M $LiPF_{6}$/EC:MA (1:3, v/v) resulted in a decrease in the initial irreversible capacity and it was due to the suppression of the solvent decomposition on the electrode surface.

Electrochemical Characteristics of Electrolyte Additives and Nano-Pb/AC Anode for Ultra Batteries (울트라 배터리 용 전해액 첨가제와 Nano-Pb/AC 음극의 전기화학적 특성)

  • Kim, Geun Joong;Lee, Jong Dae
    • Applied Chemistry for Engineering
    • /
    • v.29 no.5
    • /
    • pp.549-555
    • /
    • 2018
  • In this study, the electrochemical properties of nano-Pb/activated carbon (nano-Pb/AC) composites and electrolyte additives were examined to improve the performance of ultra batteries. Physical properties of the prepared nano-Pb/AC composites were analyzed using FE-SEM, TEM, XPS and BET. The electrochemical performances of ultra batteries were performed by cycle, rate performance and impedance tests. The cycling performance of nano-Pb/AC (Pb : 9 wt%) coated ultra battery increased by 150% with respect to the lead acid one, and the discharge specific capacity increased by 119-122% for 1-5 C rate tests. As a result of the impedance test, it was confirmed that the internal resistance decreased as the nano lead content increased. The cycle performance of the ultra battery containing 0.45 vol% electrolyte additives showed 140% longer than that of no electrolyte additives.

Ionic Additives to Increase Electrochemical Utilization of Sulfur Cathode for Li-S Batteries

  • Seong, Min Ji;Yim, Taeeun
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.279-284
    • /
    • 2021
  • The high theoretical specific capacity of lithium-sulfur (Li-S) batteries makes them a more promising energy storage system than conventional lithium-ion batteries (LIBs). However, the slow kinetics of the electrochemical conversion reaction seriously hinders the utilization of Li-S as an active battery material and has prevented the successful application of Li-S cells. Therefore, exploration of alternatives that can overcome the sluggish electrochemical reaction is necessary to increase the performance of Li-S batteries. In this work, an ionic liquid (IL) is proposed as a functional additive to promote the electrochemical reactivity of the Li-S cell. The sluggish electrochemical reaction is mainly caused by precipitation of low-order polysulfide (l-PS) onto the positive electrode, so the IL is adopted as a solubilizer to remove the precipitated l-PS from the positive electrode to promote additional electron transfer reactions. The ILs effectively dissolve l-PS and greatly improve the electrochemical performance by allowing greater utilization of l-PS, which results in a higher initial specific capacity, together with a moderate retention rate. The results presented here confirmed that the use of an IL as an additive is quite effective at enhancing the overall performance of the Li-S cell and this understanding will enable the construction of highly efficient Li-S batteries.

Market and Technology Analysis for Organic Electrolyte Additive of Lithium Battery (이차전지 유기 전해질 첨가제 시장 및 기술 분석)

  • Lee, Jongtaik
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2014.11a
    • /
    • pp.407-408
    • /
    • 2014
  • 유기 전해액 성능에 따라 고에너지 밀도, 장수명, 안전성의 특징에 영향을 미치므로 전해액 첨가제에 대한 연구가 활발하게 진행되고 있다. 국내외적으로 각각 7.7%, 6.2%의 연평균 성장률을 가질 것으로 예상되고 있다. 전해액을 포함한 관련 소재는 일본을 중심으로 성장해 왔으나, 최근 국내 이차전지 산업 발전에 따라 원천 기술 확보를 통한 주요 소재 국산화 대체가 시급하다. 이에 따라, 파낙스이텍, 솔브레인, 천보 등을 중심으로 국내 기업의 전해칠 첨가제 개발이 활발히 진행 중이다.

  • PDF

Magnetic Properties of Thin Cu/Co Multilayers Made by Electrodeposition

  • Lee, Jung-Ju;Lee, Jin-Han;Hong, Kim-In
    • Journal of Magnetics
    • /
    • v.10 no.3
    • /
    • pp.118-121
    • /
    • 2005
  • We have investigated the magnetic properties of electroplated thin Cu/Co multilayers by using electrolytes made of copper sulphate and cobalt sulphate and by applying alternating plating voltage. While the multilayers plated with pure electrolyte showed superparamagnetism, those plated with organic additives showed ferromagnetic behavior. These changes are attributed to the so-called 'self-annealing' effect and reduction of grain size caused by the organic additives.