• Title/Summary/Keyword: Electrolyte Additive

Search Result 128, Processing Time 0.026 seconds

Electrodeposition of Copper on Porous Reticular Cathode (II) - Effect of PEG and MPS on throwing Power- (다공성 그물구조 음극을 이용한 구리 전착에 관한 연구 (II) -유기첨가제 PEG, MPS의 영향 -)

  • Lee Kwan Hyi;Lee Hwa Young;Jeung Won Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.2
    • /
    • pp.41-46
    • /
    • 2001
  • The effect of organic additives such as PEG ind MPS on throwing power have been studied in the fabrication of porous reticular metal by electrodeposition using the mixture of cupric sulfate and sulfuric acid as electrolyte. Both the polarization test and the electrodeposition on the stacked electrodes, mean pore diameter of which was $250{\mu}m$, were performed to illustrate the behavior of throwing power quantitatively. As far as PEG was concerned, it lowered throwing power of electrodeposition on the porous electrode used in this work while the addition of MPS up to 500 ppm in electrolyte enhanced throwing power monotonously. When both MPS and PEG were added in electrolyte, the effect of MPS on throwing power was superior to that of PEG. However, the excess addition of MPS was found to cause the defect in mechanical strength of deposit layer. From the result of SEM observation, it could be concluded that less than 50 ppm of MPS in electrolyte was appropriate to avoid the breakage of deposit layer.

Surface Treatment Effect on Electrochemical characteristics of Al Alloy for ship

  • Lee, Seung-Jun;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.149-149
    • /
    • 2017
  • Aluminum alloys have poor corrosion resistance compared to the pure aluminum due to the additive elements. Thus, anodizing technology artificially generating thick oxide films are widely applied nowadays in order to improve corrosion resistance. Anodizing is one of the surface modification techniques, which is commercially applicable to a large surface at a low price. However, most studies up to now have focused on its commercialization with hardly any research on the assessment and improvement of the physical characteristics of the anodized films. Therefore, this study aims to select the optimum temperature of sulfuric electrolyte to perform excellent corrosion resistance in the harsh marine environment through electrochemical experiment in the seawater upon generating porous films by variating the temperatures of sulfuric electrolyte. To fabricate uniform porous film of 5083 aluminum alloy, we conducted electro-polishing under the 25 V at $5^{\circ}C$ condition for three minutes using mixed solution of ethanol (95 %) and perchloric (70 %) acid with volume ratio of 4:1. Afterward, the first step surface modification was performed using sulfuric acid as an electrolyte where the electrolyte concentration was maintained at 10 vol.% by using a jacketed beaker. For anode, 5083 aluminum alloy with thickness of 5 mm and size of $2cm{\times}2cm$ was used, while platinum electrode was used for cathode. The distance between the two was maintained at 3 cm. Anodic polarization test was performed at scan rate of 2 mV/s up to +3.0 V vs open circuit potential in natural seawater. Surface morphology was compared using 3D analysis microscope to observe the damage behavior. As a result, the case of surface modification showed a significantly lower corrosion current density than that without modification, indicating excellent corrosion resistance.

  • PDF

Effect of Anodizing Current Density on Anti-Corrosion Characteristics for Al2O3 Oxide Film (Al2O3 산화 피막의 내식성에 미치는 양극산화 전류밀도의 영향)

  • Lee, Seung-Jun;Jang, Seok-Gi;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.153-153
    • /
    • 2016
  • Aluminum alloys have poor corrosion resistance compared to the pure aluminum due to the additive elements. Thus, anodizing technology artificially generating thick oxide films are widely applied nowadays in order to improve corrosion resistance. Anodizing is one of the surface modification techniques, which is commercially applicable to a large surface at a low price. However, most studies up to now have focused on its commercialization with hardly any research on the assessment and improvement of the physical characteristics of the anodized films. Therefore, this study aims to select the optimum temperature of sulfuric electrolyte to perform excellent corrosion resistance in the harsh marine environment through electrochemical experiment in the sea water upon generating porous films by variating the temperatures of sulfuric electrolyte. To fabricate uniform porous film of 5083 aluminum alloy, we conducted electro-polishing under the 25 V at $5^{\circ}C$ condition for three minutes using mixed solution of ethanol (95 %) and perchloric (70 %) acid with volume ratio of 4:1. Afterward, the first step surface modification was performed using sulfuric acid as an electrolyte where the electrolyte concentration was maintained at 10 vol.% by using a jacketed beaker. For anode, 5083 aluminum alloy with thickness of 5 mm and size of $2cm{\times}2cm$ was used, while platinum electrode was used for cathode. The distance between the two was maintained at 3 cm. Afterward, the irregular oxide film that was created in the first step surface modification was removed. For the second step surface modification process (identical to the step 1), etching was performed using mixture of chromic acid (1.8 wt.%) and phosphoric acid (6 wt.%) at $60^{\circ}C$ temperature for 30 minutes. Anodic polarization test was performed at scan rate of 2 mV/s up to +3.0 V vs open circuit potential in natural seawater. Surface morphology was compared using 3D analysis microscope to observe the damage behavior. As a result, the case of surface modification presented a significantly lower corrosion current density than that without modification, indicating excellent corrosion resistance.

  • PDF

Electrochemical Properties of Gel Polymer Electrolyte including Zinc Acetate Dihydrate for Zinc-Air Batteries (아연-공기 전지용 아세트산 아연 이수화물을 첨가한 고분자 전해질의 전기화학적 특성)

  • Hui Seo Kim;Dong Yun Lee;Yong Nam Jo
    • Korean Journal of Materials Research
    • /
    • v.33 no.12
    • /
    • pp.550-557
    • /
    • 2023
  • In zinc-air batteries, the gel polymer electrolyte (GPE) is an important factor for improving performance. The rigid physical properties of polyvinyl alcohol reduce ionic conductivity, which degrades the performance of the batteries. Zinc acetate is an effective additive that can increase ionic conductivity by weakening the bonding structure of polyvinyl alcohol. In this study, polymer electrolytes were prepared by mixing polyvinyl alcohol and zinc acetate dihydride. The material properties of the prepared polymer electrolytes were analyzed by Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Also, Electrochemical impedance spectroscopy was used to calculate ionic conductivity. The electrolyte resistances of GPE, 0.2 GPE, 0.4 GPE, and 0.6 GPE were 0.394, 0.338, 0.290, and 0.213 Ω, respectively. In addition, 0.6 GPE delivered 0.023 S/cm high ionic conductivity. Among all of the polymer electrolytes tested, 0.6 GPE showed enhanced cycle life performance and the highest specific discharge capacity of 11.73 mAh/cm2 at 10 mA. These results verified that 0.6 GPE improves the performance of zinc-air batteries.

Extending the Self-ordering Regime of High-field Anodization by Using an Electrolyte Additive (전해액 첨가제를 이용한 고전계 양극산화의 자기정렬에 관한 연구)

  • Kim, Min-Woo;Park, Seong-Soo;Sim, Seong-Ju;Kang, Tae-Ho;Shin, Yong-Bong;Ha, Yoon-Cheol
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.4
    • /
    • pp.219-224
    • /
    • 2011
  • Using an electrolyte additive, we examined, for the first time, a novel self-ordering regime of 160~200 V in high-field anodization which had been used for a fast fabrication of self-ordered anodic alumina nanotemplate. FE-SEM analyses conducted after the high-field anodization, pulse detachment and chemical widening of pores showed the relationship of 2.2 nm/V in this voltage range, which was identical to the previously reported one in the literature. The growth rate of the alumina film was about 60 um/hr, which was 30 times faster than that of phosphoric acid mild anodization. This study provides a new process for the fast fabrication of nanotemplates with interpore distances larger than 300 nm.

MnCo2S4/CoS2 Electrode for Ultrahigh Areal Capacitance

  • Pujari, Rahul B.;Lokhande, C.D.;Lee, Dong-Weon
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.215-219
    • /
    • 2020
  • MnCo2S4/CoS2 electrode with highly accessible electroactive sites is prepared using the hydrothermal method. The electrode exhibits an areal capacitance of 0.75 Fcm-2 at 6 mAcm-2 in 1 M KOH. The capacitance is further increased to 2.06 Fcm-2 by adding K3Fe(CN)6 and K4Fe(CN)6 (a redox couple) to KOH. This increment is associated with the redox-active properties of cobalt and manganese transition metals, as well as the ion pair of [Fe(CN)6]-3/[Fe(CN)6]-4. The capacitance retention of the MnCo2S4/CoS2 electrode is 87.5% for successive 4000 charge-discharge cycles at 10 mAcm-2 in a composite electrolyte system of KOH and ferri/ferrocyanide. The capacitance enhancement is supported by the lowest equivalent series resistance (0.62 Ωcm-2) of MnCo2S4/CoS2 in the presence of redox additive couple compared with the bare KOH electrolyte.

Effect of Li3BO3 Additive on Densification and Ion Conductivity of Garnet-Type Li7La3Zr2O12 Solid Electrolytes of All-Solid-State Lithium-Ion Batteries

  • Shin, Ran-Hee;Son, Sam-Ick;Lee, Sung-Min;Han, Yoon Soo;Kim, Yong Do;Ryu, Sung-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.712-718
    • /
    • 2016
  • In this study, we investigate the effect of the$Li_3BO_3$ additive on the densification and ionic conductivity of garnet-type $Li_7La_3Zr_2O_{12}$ solid electrolytes for all-solid-state lithium batteries. We analyze their densification behavior with the addition of $Li_3BO_3$ in the range of 2-10 wt.% by dilatometer measurements and isothermal sintering. Dilatometry analysis reveals that the sintering of $Li_7La_3Zr_2O_{12}-Li_3BO_3$ composites is characterized by two stages, resulting in two peaks, which show a significant dependence on the $Li_3BO_3$ additive content, in the shrinkage rate curves. Sintered density and total ion conductivity of the system increases with increasing $Li_3BO_3$ content. After sintering at $1100^{\circ}C$ for 8 h, the $Li_7La_3Zr_2O_{12}-8$ wt.% $Li_3BO_3$ composite shows a total ionic conductivity of $1.61{\times}10^{-5}Scm^{-1}$, while that of the pure $Li_7La_3Zr_2O_{12}$ is only $5.98{\times}10^{-6}Scm^{-1}$.

Effect of Electrolytes on Electrochemical Properties of Magnesium Electrodes

  • Ha, Se-Young;Ryu, Anna;Cho, Woosuk;Woo, Sang-Gil;Kim, Jae-Hun;Lee, Kyu Tae;Kim, Jeom-Soo;Choi, Nam-Soon
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.4
    • /
    • pp.159-164
    • /
    • 2012
  • Magnesium (Mg) deposition and dissolution behaviors of 0.2 M $MgBu_2-(AlCl_2Et)_2$, 0.5 M $Mg(ClO_4)_2$, and 0.4M $(PhMgCl)_2-AlCl_3$-based electrolytes with and without tris(pentafluorophenyl) borane (TPFPB) are investigated by ex situ scanning electron microscopy (SEM) and galvanostatic cycling of Mg/copper (Cu) cells. To ascertain the factors responsible for the anodic stability of the electrolytes, linear sweep voltammogrametry (LSV) experiments for various electrolytes and solvents are conducted. The effects of TPFPB as an additive on the anodic stability of 0.4M ($(PhMgCl)_2-AlCl_3$/THF electrolyte are also discussed.

Changing PEO coating formation on Mg alloys by particle additions to the treatment electrolyte

  • Blawert, Carsten;Srinivasan, Bala;Liang, Jun;Huang, Yuanding;Hoche, Daniel;Scharnagl, Nico;Heitmann, Volker;Burmester, Ulrich
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.7-11
    • /
    • 2012
  • Plasma electrolytic oxidation of magnesium alloys is a well known technique to produce corrosion and wear resistant coatings. The addition of particles to the electrolyte provides a possibility to produce coatings with an increasing range of composition by in-situ incorporation of those particles into the coating. An extensive literature review has revealed that the mode of incorporation depends mainly on the melting point of the used particles and the energy provided by the discharges of the PEO process. The spectrum ranges from inert to partly reactive incorporation, but a complete reactive incorporation and a formation of a new single phase coating was not observed so far. Thus a new approach in PEO processing is introduced using specific particles as a kind of sintering additive, changing not only the composition but lowering the melting temperature and increase the liquid phase fraction during the discharges, resulting in a new amorphous coating.

  • PDF

Suppression of Co-intercalation on the Carbon Anode by MA Addition in a PC-base Electrolyte

  • Kim, Woo-Seong;Park, Dong-Won;Jung, Hwan-Jung;Choi, Yong-Kook
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.1
    • /
    • pp.82-86
    • /
    • 2006
  • Propylene Carbonate (PC) has the interesting properties of being able to dissolve and dissociate lithium salts, thus leading to highly conducting electrolytes even at low temperatures. Moreover, electrolytes that contain PC are stable against oxidation at voltages up to ~5 V. However, it is known that, when lithium is intercalated into graphite in pure PC based electrolytes, solvent co-intercalation occurs, leading to the destruction of the graphite structure. (i.e., exfoliation). The objective of this study was to suppress PC decomposition and prevent exfoliation of the graphite anode by co-intercalation. Electrochemical characteristics were studied using Kawasaki mesophase fine carbon (KMFC) in different 1 M $LiPF_6$/PC-based electrolytes. Electrochemical experiments were completed using chronopotentiometry, cyclic voltammetry, impedance spectroscopy, X-ray diffraction, and scanning electron microscopy. From the observed results, we conclude that the MA and $Li_2CO_3$ additive suppressed co-intercalation of the PC electrolyte into the graphite anode. The use of additives, for reducing the extent of solvent decomposition before exfoliation of the graphite anode, could therefore enhance the stability of a KMFC electrode.