• 제목/요약/키워드: Electrolysis system

검색결과 211건 처리시간 0.026초

전기분해를 이용한 불소제거 (Removal of Fluorine by Electrolysis Process)

  • 강광남;김인환;윤용수
    • 환경위생공학
    • /
    • 제15권2호
    • /
    • pp.41-48
    • /
    • 2000
  • In this study, we have investigated the effect of the various operating conditions on the removal fluorine in the rinsed water for the semiconductor industry by using electrolysis process. The removal efficiency of fluorine was irrelevant to initial pH, and carbon anode was high-level treatment in the effect of various electrodes. Fluorine included in the wastewater is treated by the addition of a Ca(OH)2, removal efficiency of electrolysis was increased about 40%. Besides the removal efficiency of fluorine was increased as the current density was increased and this treatment system could reduce both the total sludge and running costs. The feasibility of the electrochemical treatment to the fluorine containing wastewater was verified from this study.

  • PDF

Solid Oxide Fuel Cells for Power Generation and Hydrogen Production

  • Minh, Nguyen Q.
    • 한국세라믹학회지
    • /
    • 제47권1호
    • /
    • pp.1-7
    • /
    • 2010
  • Solid oxide fuel cells (SOFCs) have been under development for a variety of power generation applications. Power system sizes considered range from small watt-size units (e.g., 50-W portable devices) to very large multi-megawatt systems (e.g., 500-MW base load power plants). Because of the reversibility of its operation, the SOFC has also been developed to operate under reverse or electrolysis mode for hydrogen production from steam (In this case, the cell is referred to as solid oxide electrolysis cell or SOEC.). Potential applications for the SOEC include on-site and large-scale hydrogen production. One critical requirement for practical uses of these systems is long-term performance stability under specified operating conditions. Intrinsic material properties and operating environments can have significant effects on cell performance stability, thus performance degradation rate. This paper discusses potential applications of the SOFC/SOEC, technological status and current research and development (R&D) direction, and certain aspects of long-term performance degradation in the operation of SOFCs/SOECs for power generation/hydrogen production.

Optimization of wastewater electrolysis using life cycle assessment and simulated annealing

  • Chun Hae Pyo;Chon Hyo-Taek;Kim Young Seok
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
    • /
    • pp.518-521
    • /
    • 2003
  • LCA (Life Cycle Assessment), that unifies the scale of various environmental impacts, and simulated annealing are applied to optimizing electrolysis of wastewater from PCB (Printed Circuit Board) production. The changes of environmental impact can be quantified with LCA and the total changes of environmental impacts can be expressed as a function of power consumed, Cu recycled, $Cl_2$, NOx and SOx discharged through restriction of feasible reactions. In a single-variate condition, the environmental optimum can be easily obtained through plotting and comparing each environmental impact value. In 8V potentiostatic electrolysis, the lowest environmental impact can be achieved after 90min. To optimize a multi-variate conditional system, simulated annealing can be applied and this can give the quick and near optimum in complex systems, where many input and output materials are involved, through experimentally measured values without a theoretical modeling.

  • PDF

해수 전기분해용 대전류 인버터 방식의 정류기 특성분석 (Output Characteristic Analysis of High-Current Rectifier for Electrolysis of Seawater)

  • 조원우;김진영;김슬기;김인동;노의철;고강우;배상범;강부녕
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2010년도 하계학술대회 논문집
    • /
    • pp.570-571
    • /
    • 2010
  • To reduce the problem of ecocide, the plating equipment, water treatment system, electrolysis facility in ship need high current high power rectifier. This paper shows entire constitution of the proposed high-current rectifier for electrolysis of seawater, describes a way to design controller and analyzes output characteristic of the rectifier.

  • PDF

연료 재순환 이젝터를 이용한 연료전지-폐기물 기반 가역 고체 산화물 연료전지의 최적 설계 (Optimal Design of RSOFC System Coupled with Waste Steam Using Ejector for Fuel Recirculation)

  • 잡반티엔;이영덕;김영상;쿠엔;안국영
    • 한국수소및신에너지학회논문집
    • /
    • 제30권4호
    • /
    • pp.303-311
    • /
    • 2019
  • Reversible solid oxide fuel cell (RSOFC) has become a prospective device for energy storage and hydrogen production. Many studies have been conducted around the world focusing on system efficiency improvement and realization. The system should have not only high efficiency but also a certain level of simplicity for stable operation. External waste steam utilization was proved to remarkably increase the efficiency at solid oxide electrolysis system. In this study, RSOFC system coupled with waste steam was proposed and optimized in term of simplicity and efficiency. Ejector for fuel recirculation is selected due to its simple design and high stability. Three system configurations using ejector for fuel recirculation were investigated for performance of design condition. In parametric study, the system efficiencies at different current density were analyzed. The system configurations were simulated using validated lumped model in EBSILON(R) program. The system components, balance of plants, were designed to work in both electrolysis and fuel cell modes, and their off-design characteristics were taken into account. The base case calculation shows that, the system with suction pump results in slightly lower efficiency but stack can be operated more stable with same inlet pressure of fuel and air electrode.

Ni-Pt 나노 촉매의 혼합비가 음이온 교환막 수전해 특성에 미치는 영향 (Effect of the Mixture Ratio of Ni-Pt Nanocatalysts on Water Electrolysis Characteristics in AEM System)

  • 노립신;대관하;이재영;이홍기
    • 한국수소및신에너지학회논문집
    • /
    • 제32권5호
    • /
    • pp.285-292
    • /
    • 2021
  • To study the effect of the mixture ratio of Ni-Pt nanocatalysts on water electrolysis characteristics in anion exchange membrane system, Ni-Pt nanocatalysts were loaded on carbon black by using a spontaneous reduction reaction of acetylacetonate compounds. The loading weight of Ni-Pt nanocatalysts on the carbon black was measured by thermogravimetric analyzer and the elemental ratio of Ni and Pt was estimated by energy dispersive x-ray analyzer. It was found that the loading weight of Ni-Pt nanoparticles was 5.36-5.95 wt%, and the loading weight increased with increasing Pt wt%. As the Ni-Pt loading weight increased, the specific surface area decreased, because Ni-Pt nanoparticles block the pores of carbon black. It was confirmed by BET analysis and dynamic vapor sorption analysis. I-V characteristics were estimated.

이중 페로브스카이트 촉매 PrBaMn2O5+δ의 고온전기분해조(Solid Oxide Electrolysis Cell) 연료극 촉매로 적용 가능성에 대한 연구 (Study on Possibility of PrBaMn2O5+δ as Fuel Electrode Material of Solid Oxide Electrolysis Cell)

  • 권영진;김동연;배중면
    • 한국군사과학기술학회지
    • /
    • 제20권4호
    • /
    • pp.491-496
    • /
    • 2017
  • The hydrogen($H_2$) is promising energy carrier of renewable energy in the microgrid system such as small village and military base due to its high energy density, pure emission and convenient transportation. $H_2$ can be generated by photocatalytic water splitting, gasification of biomass and water electrolysis driven by solar cell or wind turbine. Solid oxide electrolysis cells(SOECs) are the most efficient way to mass production due to high operating temperature improving the electrode kinetics and reducing the electrolyte resistance. The SOECs are consist of nickel-yttria stabilized zirconia(NiO-YSZ) fuel electrode / YSZ electrolyte / lanthanum strontium manganite-YSZ(LSM-YSZ) air electrode due to similarity to Solid Oxide Fuel Cells(SOFCs). The Ni-YSZ most widely used fuel electrode shows several problems at SOEC mode such as degradation of the fuel electrode because of Ni particle's redox reaction and agglomeration. Therefore Ni-YSZ need to be replaced to an alternative fuel electrode material. In this study, We studied on the Double perovskite $PrBrMnO_{5+{\delta}}$(PBMO) due to its high electric conductivity, catalytic activity and electrochemical stability. PBMO was impregnated into the scaffold electrolyte $La_{0.8}Sr_{0.2}Ga_{0.85}Mg_{0.15}O_{3-{\delta}}$(LSGM) to be synthesized at low temperature for avoiding secondary phase generated when it exposed to high temperature. The Half cell test was conducted at SOECs and SOFCs modes.

수전해 시스템에 적용하기 위한 상용 음이온교환막의 특성평가 (Evaluation of Commercial Anion Exchange Membrane for the application to Water Electrolysis)

  • 박준호;임광섭;남상용
    • 멤브레인
    • /
    • 제32권6호
    • /
    • pp.496-513
    • /
    • 2022
  • 본 연구에서는 음이온 교환막 수전해 시스템에 적용가능성을 확인하고자 상용 음이온 교환막인 FAA-3-50, Neosepta-ASE, Sustainion grade T, Fujifilm type 10의 관련 물성을 평가하였다. 음이온교환막을 이용하는 특성상 음이온교환기의 확인을 위하여 SEM/EDX를 이용하여 상용막의 모폴로지와 표면의 원소를 분석하여 상용막이 포함하고 있는 작용기의 분포를 확인하였다. 또한, UTM과 TGA를 이용하여 기계적 강도 및 열분해온도를 측정하여 수전해의 구동조건을 만족하는지 확인하였다. 음이온 교환막으로서의 성능을 파악하기 위하여 중요한 특성인 이온교환용량과 이온전도도를 측정하였으며, 알칼리 환경에서 구동되기 때문에 각각의 상용막의 내알칼리성을 확인하기 위한 내구성 테스트를 진행하여 비교하였다. 최종적으로 막-전극 접합체를 제조하여 수전해 single cell test를 진행하여 60℃, 70℃, 80℃의 온도 조건에서 cell 성능을 확인하였고 장기 cell test로 다른 온도에서 20 cycle 측정하여 수전해 성능을 비교하여 상용막의 음이온 교환막 수전해에 적용가능성을 비교하여 확인하였다.

전기분해 반응조의 간접산화 효과가 하.폐수 재활용 시스템 설계에 미치는 영향 (Effect of Indirect Oxidation on the Design of Sewage/wastewater Reuse System with an Electrolysis Reactor)

  • 신춘환
    • 청정기술
    • /
    • 제15권2호
    • /
    • pp.116-121
    • /
    • 2009
  • Ti/$IrO_2$ 를 양극으로 SUS 316L 을 음극으로 사용한 전기분해 반응조에 간접산화조를 설치하여 간접산화 효과를 제시함으로써 하폐수 재활용 시스템의 설계에 미치는 영향을 고찰하였다. 전기분해 반응조의 운전조건은 극판 간격, 전류 밀도, 전해질 농도에 대한 영향을 조사하여 극판 간격 6 mm, 전류 밀도 1.0 $A/dm^2$ L, 전해질 농도 15%로 설정하였다. 산화에 의한 제거효율은 유기물은 COD로서 직접산화조에서 55%, 간접산화조에서 12.5${\sim}$15.0%의 추가 분해가 일어나고 있으며 T-N (전체 질소량), T-P(전체 인량)는 직접산화조에서 각각 88%, 75%의 제거효율을 나타내고 있으나 COD제거와는 달리 간접산화조의 추가 제거 효과는 거의 없는 것으로 판명되었다. 또한 COD, T-N, T-P의 제거는 2-5일의 반응초기에 일어나고 있기 때문에 전기 분해 반응조의 체류시간을 크게 설계할 필요는 없다는 결론을 얻을 수 있었다.

철전기분해장치(FNR)에서 철판의 표면적이 인제거에 미친 영향에 관한 연구 (A Study on Phosphorus Removal Effects Per Iron Surface Area in FNR Process)

  • 김영규
    • 한국환경보건학회지
    • /
    • 제38권6호
    • /
    • pp.568-574
    • /
    • 2012
  • Objectives: The purpose of this experiment is to understand the phosphorus removal ratio effects of iron plates per unit of surface area through the iron electrolysis system, which consists of an anoxic basin, aerobic basin, and iron precipitation apparatus. Methods: Iron electrolysis, which uses an iron precipitation reactor in anoxic and oxic basins, consisted of iron plates with total areas of 400 $cm^2$, 300 $cm^2$ and 200 $cm^2$ respectively. The FNR process was operated with a hydraulic retention time and a sludge retention time of 12 hours and three days, respectively. Wastewater used in the experiments was prepared by dissolving $KH_2PO_4$ in influent water. Results: The iron plates 400 $cm^2$ (16.6 $mA/cm^2$), 300 $cm^2$ (13.3 $mA/cm^2$) and 200 $cm^2$ (7.3 $mA/cm^2$) in surface area in the phosphorus reactor had respective phosphorus of 2.4 mg/l, 2.7 mg/l and 3.2 mg/l in the effluent and phosphorus removal respective efficiencies of 90.3%, 89.1% and 87.1%. The effluent in the reactor, where the iron plate was not used, had relatively very low phosphorus removal efficiency showing phosphorus concentration of 15.3 mg/l and a phosphorus removal efficiency about 38.3%. Phosphorus removal per ferrous was 0.472 mgP/mgFe in the iron electrolysis system where the surface area of iron was low. Phosphorus pollution load per active surface area and the phosphorus removal efficiency had an interrelation of RE = -0.27LS + 89.0 (r = 0.85). Conclusion: With larger iron plate surface area, the elution of iron concentration and phosphorus removal efficiency was higher. The removal efficiency of phosphorus has decreased by increasing the initial phosphate concentration in the iron electrodes. This shows a tendency of decreasing phosphorus removal efficiency because of decreasing of iron deposition as the phosphorus pollution load per active surface area increases.