• Title/Summary/Keyword: Electrolysis apparatus

Search Result 14, Processing Time 0.02 seconds

A Study on Remediation of Heavy Metal Contaminated Soil using a Soil Electrolysis Apparatus with Spiral Paddle (나선형패들이 장착된 토양전기분해장치를 이용한 중금속 오염토양 정화에 관한 연구)

  • Lee, Jun-Hee;Choi, Young-Ik;Jung, Jin-Hee
    • Journal of Environmental Science International
    • /
    • v.26 no.6
    • /
    • pp.797-802
    • /
    • 2017
  • This study aimed to remove organic matter and heavy metals that could affect the recycling of soils contaminated by heavy metals, by means of electrolysis, carried out simultaneously with the leaching of the soil. To ensure better experimental equipment, a soil electrolysis apparatus, equipped with spiral paddles, was used to agitate the heavy-metal-contaminated soil effectively. The heavy-metal-contaminated soil was electrolyzed by varying the voltage to 5 V(Condition 1), 15 V(Condition 2), and 20 V(Condition 3), under the optimal operating conditions of the electrolysis apparatus, as determined through previous studies. The results showed that the pH of the electrolyte solution and the heavy-metal-contaminated soil, after electrolysis, tended to decrease with an increase in voltage. The highest removal efficiencies of TOC and $COD_{Cr}$ were 18.8% and 29.1%, 38.8% and 4.2%, and 33.3% and 50.0%, under conditions 1, 2 and 3, respectively. Heavy metals such as Cd and As were not detected in this experiment. The removal efficiencies of Cu, Pb and Cr were 4.7%, 8.3% and 2.1%, respectively, under Condition 1, while they were 42.9%, 15.2% and 22.1%, respectively, under Condition 2, and 4.7%, 23.0%, and 24.9%, respectively, under Condition 3. These results suggest that varying the voltage with the soil electrolysis apparatus for removing contaminants for the recycling of heavy-metal-contaminated soil allows the selective removal of contaminants. Therefore, the results of this study can be valuable as basic data for future studies on soil remediation.

Energy self-sufficient electrolysis apparatus for sterilization of portable toilet in small vessels (소형선박에 설치 가능한 해상기인 오염원 멸균용 에너지 자급형 전기분해 장치 개발)

  • Oh, Seung-Won;Hahn, Min-Soo;Choi, Hae-Wook
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.48 no.3
    • /
    • pp.269-276
    • /
    • 2012
  • Marine caused pollution occurs mostly near coastal area and its main cause was known to be human feces issued from small vessels. To sterilize liquid pollutants from portable toilets of small vessels, an electrolysis treatment is judged to be the most economic and stable method considering an environment of its use. In this paper, we presents an electrolysis apparatus which is the most appropriate for sterilizing pollutants from portable toilets of small vessels and derives the minimum operating time of the apparatus for sterilizing norovirus which is a main target of marine caused pollution sources. In order to utilize renewable energy, we designed an apparatus which generates a renewable energy from solar cells. As a result, we could confirm the applicability of the proposed system with the results from experiments in three cases of different weather conditions.

Sterilization and ecofriendly neutralization of seawater using electrolysis (전기분해에 의한 해수살균 및 친환경 중화에 관한 연구)

  • Yang, Jeong-Hyeon;Choi, Jong-Beom;Yun, Yong-Sup
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.276-280
    • /
    • 2017
  • In this study, we investigated the effect of sterilization and the neutralization of treated ballast water using seawater electrolysis. The electrolysis apparatus has a cation-selective membrane for passing the cation and a titanium electrode in each cell. We examined the sterilization effect after an incubation period of 24 hr. The oxidation reaction during electrolysis caused, the solution to become strongly acidic due to the generation of a hydroxyl group, and the oxidation reduction potentials(ORP) was increased to 800 - 1200mV. After the reduction reaction, the solution became alkaline(pH 9 - 12), and ORP was decreased to - 900 - - 750 mV. It might be possible to control the pH of ballast water through electrolysis. In addition, we demonstrated the effects of sterilization of ballast water containing generated hypochlorous acid using electrolysis under high ORP condition.

A Characteristic of Nitrogen and Phosphorus Removal in Anoxic/Oxic Basins combined with Iron Electrolysis (철 전기분해장치와 무산소/호기공정을 결합한 질소, 인제거 특성에 관한 연구)

  • Kim, Young-Gyu
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.6
    • /
    • pp.525-531
    • /
    • 2017
  • Objectives: The purpose of this experiment is to better understand the nitrogen and phosphorus removal ratio according to operating conditions in an iron electrolysis system consisting of an anoxic basin, aerobic basin, and iron precipitation apparatus. Methods: Iron electrolysis consists of an iron precipitation reactor composed of iron plates in oxic and anoxic basins. We studied the interrelation coefficient between T-N and T-P removal rates and F/M ratio, and the C/N ratio and BOD removal rate. Results: The F/M ratio and the T-N and T-P removal rate per unit area have interrelation coefficients of 0.362 and 0.603, respectively. The removal rate per MLVSS and the T-N and T-P removal rate per unit area have respective interrelation coefficients of 0.49 and 0.59. Conclusions: The removal rate of T-N and T-P increased with the increasing F/M ratio in the influent, and they also linearly increased in proportion to the C/N ratio of influent and BOD removal rate of the reactor.

Thermal-flow Analysis of the Cooling System in the Medicated Water Electrolysis Apparatus (냉이온수기 냉각시스템에 관한 열유동 해석)

  • Jeon, Seong-Oh;Lee, Sang-Jun;Lee, Jong-Chul;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.3
    • /
    • pp.33-38
    • /
    • 2011
  • Medicated water electrolysis apparatus, which electrolyzes water into acidic water and alkaline water, was in the spotlight as becoming known the effect of alkaline water. It is known as good for health as removing active oxygen in the human's body and promoting digestion. But, the customers could not get that desired water temperature because these apparatuses are directly connected with a water pipe. So, the cooling system was developed for controlling the temperature of the alkaline water. One of the typical way is to store water in water tank and control the temperature. But, in this way, storing water can be polluted impurities coming from outside. For protecting this pollution, the cooling system based on indirect heat exchange method through phase change between water and ice was developed. In this study, we have calculated efficiency of the cooling system with phase change by experiment and commercial CFD(Computational Fluid Dynamics) code, ANSYS CFX. To consider the effect of latent heat that is generated by melting ice, we have simulated two phase numerical analyses used enthalpy method and found the temperature, velocity, and ice mass distribution for calculating the efficiency of cooling. From the results of numerical analysis, we have obtained the relationship between the cooling efficiency and each design factor.

A Study on Phosphorus Removal Effects Per Iron Surface Area in FNR Process (철전기분해장치(FNR)에서 철판의 표면적이 인제거에 미친 영향에 관한 연구)

  • Kim, Young-Gyu
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.6
    • /
    • pp.568-574
    • /
    • 2012
  • Objectives: The purpose of this experiment is to understand the phosphorus removal ratio effects of iron plates per unit of surface area through the iron electrolysis system, which consists of an anoxic basin, aerobic basin, and iron precipitation apparatus. Methods: Iron electrolysis, which uses an iron precipitation reactor in anoxic and oxic basins, consisted of iron plates with total areas of 400 $cm^2$, 300 $cm^2$ and 200 $cm^2$ respectively. The FNR process was operated with a hydraulic retention time and a sludge retention time of 12 hours and three days, respectively. Wastewater used in the experiments was prepared by dissolving $KH_2PO_4$ in influent water. Results: The iron plates 400 $cm^2$ (16.6 $mA/cm^2$), 300 $cm^2$ (13.3 $mA/cm^2$) and 200 $cm^2$ (7.3 $mA/cm^2$) in surface area in the phosphorus reactor had respective phosphorus of 2.4 mg/l, 2.7 mg/l and 3.2 mg/l in the effluent and phosphorus removal respective efficiencies of 90.3%, 89.1% and 87.1%. The effluent in the reactor, where the iron plate was not used, had relatively very low phosphorus removal efficiency showing phosphorus concentration of 15.3 mg/l and a phosphorus removal efficiency about 38.3%. Phosphorus removal per ferrous was 0.472 mgP/mgFe in the iron electrolysis system where the surface area of iron was low. Phosphorus pollution load per active surface area and the phosphorus removal efficiency had an interrelation of RE = -0.27LS + 89.0 (r = 0.85). Conclusion: With larger iron plate surface area, the elution of iron concentration and phosphorus removal efficiency was higher. The removal efficiency of phosphorus has decreased by increasing the initial phosphate concentration in the iron electrodes. This shows a tendency of decreasing phosphorus removal efficiency because of decreasing of iron deposition as the phosphorus pollution load per active surface area increases.

A Study on the Adequate Treatment of Municipal Landfill Leachate -A Case Study of Nanjido Landfill Leachate- (도시폐기물 매립지 침출수의 적정처리에 관한 연구 -난지도 폐기물 매립지 침출수를 대상으로-)

  • 이병인
    • Journal of Environmental Science International
    • /
    • v.4 no.3
    • /
    • pp.269-276
    • /
    • 1995
  • An experimental research was conducted in order to study the treatability of municipal landfill leachate using a combined physio-chemical and biological treatment. The leachate was obtained from Nanjido landfill site in Seoul. Several sets of bench-scale sequencing batch reactor(SBR) and physic-chemical reactors were used as experimental apparatus. This experiment lasted for about 2 years. The results are as follows: 1. The characteristics of Nanjido landfill leachate were pH 7.4~8.2, BOD 79~450mg/L, COD 998~1460mg/L, $NH_3-N$ 1380~3412mg/L, 7-P 2.6~7.0mg/L, color 890~1992 unit, and heavy metals are a very small amount. 2. Either physio-chemical or biological treatment of Landfill leachate alone did not work well. So for the adequate treatment of leachate, it was necessary to deal with the physio-chemical pretreatment before biological treatment. And it was found that both electrolysis and ozone treatment are better pretreatments of leachate than others. 3. In this study, landfill leachate was effectively processed by two step : first by electrolysis pretreatment, and secondly by SBR treatment. Thus, the study showed considerable substrate removal of raw leachate, even though the rate of COD removal depended on HRT.

  • PDF

A Study on the Adequate Treatment of Municipal Landfill Leachate -A Case Study of Nanjido Landfill Leachate- (도시폐기물 매립지 침출수의 적정처리에 관한 연구 -난지도 폐기물 매립지 침출수를 대상으로-)

  • Lee, Byeong-In
    • Journal of Environmental Science International
    • /
    • v.4 no.3
    • /
    • pp.117-117
    • /
    • 1995
  • An experimental research was conducted in order to study the treatability of municipal landfill leachate using a combined physio-chemical and biological treatment. The leachate was obtained from Nanjido landfill site in Seoul. Several sets of bench-scale sequencing batch reactor(SBR) and physic-chemical reactors were used as experimental apparatus. This experiment lasted for about 2 years. The results are as follows: 1. The characteristics of Nanjido landfill leachate were pH 7.4~8.2, BOD 79~450mg/L, COD 998~1460mg/L, $NH_3-N$ 1380~3412mg/L, 7-P 2.6~7.0mg/L, color 890~1992 unit, and heavy metals are a very small amount. 2. Either physio-chemical or biological treatment of Landfill leachate alone did not work well. So for the adequate treatment of leachate, it was necessary to deal with the physio-chemical pretreatment before biological treatment. And it was found that both electrolysis and ozone treatment are better pretreatments of leachate than others. 3. In this study, landfill leachate was effectively processed by two step : first by electrolysis pretreatment, and secondly by SBR treatment. Thus, the study showed considerable substrate removal of raw leachate, even though the rate of COD removal depended on HRT.

Development of Water Treatment Device By Fluidization Electrolysis Using Granular Ceramics

  • Ishikawa, Katsumi;Tamura, Rokurou;Shuto, Rika;Miyawaki, Jinuchi;Tanabe, Kimiko
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.737-745
    • /
    • 1996
  • In recent years, with the increase in the consumption of natural resources and energy, global environmental problems have appeared. This is a very serious environmental load on worldwide food production. For this reason, innovative techniques for production of low entropy by using effectively the energy for the ecosystemic agriculture have been expected. In this study, granular ceramics of 2 to 3mm in diameter having electrical charges at the surface were produced, using the natural raw materials of silicate minerals haing excellent moldabilities and sintering properties . Production of water having functions was attempted by effective use of the electrochemical energy of the ceramics with an efficient water treatment apparatus in which the ceramics were fluidized in water, differently from conventional systems. In the experimental results, the EC of water treated with the ceramics was not changed, but the ORP and also the pH and the DO were changed. The speed of oxidation -re uction reaction was high, and the ceramics -treated water enhanced the vigor of seeds. It can be expected that this treatment system, by which the ORP of water can be moderately controlled, is advantageous in controlling the growth of plants.

  • PDF

Reduction of Odor Emission from Swine Excreta using Silver Nano Colloid (은 나노 콜로이드를 이용한 돼지분뇨의 악취 저감 효과)

  • Kim, Koo-Pil;Choi, Young-Soo;Oh, Kwang-Hyun;Koo, Kyung-Bon;Suh, Sang-Ryong;Yoo, Soo-Nam;Lee, Kyeong-Hwan
    • Journal of Biosystems Engineering
    • /
    • v.36 no.5
    • /
    • pp.342-347
    • /
    • 2011
  • The effect of SNC(silver nano colloid) on the emission reduction of odors such as ammonia ($NH_3$), hydrogen sulfide ($H_2S$), and methane ($CH_4$) from swine excreta was studied. Silver has been used as an universal antibiotic substance and can reduce the emission of some gases by sterilizing action. Therefore, an apparatus which produces SNC was developed and was conducted its performance test. Also, the SNC made by the apparatus was applied to swine excreta sampled from a piggery in oder to find the effect on the reduction of odor emission. An electrolysis apparatus was developed to produce SNC and its capacity was 0.024 ppm/$hr{\cdot}L$. The effects of SNC on the reduction of odor emission from swine excreta were tested for bad smell gases of ammonia ($NH_3$), hydrogen sulfide ($H_2S$) and methane ($CH_4$). For ammonia gas, factorial experiments were conducted to find the effects of concentration and application rate of SNC. The test results for the different concentrations of 20 ppm, 50 ppm, and 100 ppm showed that the more concentration of SNC was increased, the more emission reduction of ammonia gas increased. From the test results about the effect of application rate, the more SNC was applied, the more emission reduction of $NH_3$ increased. In order to reduce the concentration of $NH_3$ below 5 ppm, SNC of 50 ppm is recommended to be applied at an interval of 6 hours, and is mixed with swine excreta in the volumetric ratio of 4:1. For hydrogen sulfide gas, the concentration was decreased as time went by and was reduced rapidly in the first stage of the tests for all applied concentrations of SNC (20 ppm, 50 ppm, and 100 ppm). Especially, when 100 ml of SNC with 100 ppm was applied, emission of hydrogen sulfide gas was reduced rapidly during early 4 hours after the application of SNC. And, concentration of hydrogen sulfide gas was maintained below 20 ppm after 12 hours. For methane gas, t-test showed that there was no significance on the effect of its application for all applied concentrations of SNC. Therefore, it was concluded that the application of SNC on swine excreta had no effect on the emission reduction of $CH_4$.