• Title/Summary/Keyword: Electroless Nickel Electroless Palladium Immersion Gold (ENEPIG)

Search Result 10, Processing Time 0.009 seconds

Evaluation of ENEPIG Surface Treatment for High-reliability PCB in Mobile Module

  • Lee, Joon-Kyun;Yim, Young-Min;Seo, Jun-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.3
    • /
    • pp.142-147
    • /
    • 2010
  • We evaluated characteristics of ENEPIG (Electroless Nickel Electroless Palladium Immersion Gold) surface treatment for mobile equipment that requires high reliability, in addition to investigating surface treatment processes for semiconductor boards that require high reliability such as regular PCB-package systems, board-on-chip, chip-scaled package (CSP), etc and application for semiconductor package board of SIP, BOC. As a result, it appeared that ENEPIG has superior properties compared to ENIG surface treatment in corrosion resistance, solder junction, wetting, etc. We anticipate that these results will be able to lend credibility to ENEPIG as a low-cost alternative for producing mobile devices such as the cell phones, especially when applied to mass production.

Standardization of Bending Impact Test Methods of Sn-Ag-Cu Lead Free Solder Ball (Sn-Ag-Cu계 무연 솔더볼 접합부의 굽힘충격 시험방법 표준화)

  • Jang, Im-Nam;Park, Jai-Hyun;Ahn, Yong-Sik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.1
    • /
    • pp.55-61
    • /
    • 2010
  • An impact bending test method was used to evaluate the reliability for the solder joint of lead-free solder ball. In order to standardize the test method, the four point impact bending test was applied under the conditions of various frequencies and amounts of +/-amplitude respectively. Effects on the results were analysed. The optimum condition for impact bending test achieved in this study was the frequency of 10 Hz, and the amplitude of (+12/-1)~(+15/-1). 3 kinds of surface finishes Cu-OSP (Organic Solderability Preservative), ENIG (Electroless Nickel Immersion Gold), and ENEPIG (Electroless Nickel, Electroless Palladium, Immersion Gold) were used. Fracture surface showed that cracks were initiated and fractured along the intermetallic layer in the case of surface finishes of Cu-OSP and ENIG, while in the case of ENEPIG the cracks were initiated and propagated in the solder region.

Prevention of Running Blots between the Patterns during the Electroless Nickel Electroless Palladium Immersion Gold (ENEPIG) Surface Finish (무전해 니켈·팔라듐·금도금 표면처리 공정의 도금 번짐 불량 및 개선)

  • Eom, Ki Heon;Seo, Jung-Wook;Won, Yong Sun
    • Clean Technology
    • /
    • v.19 no.2
    • /
    • pp.84-89
    • /
    • 2013
  • The running blots between patterns during electroless nickel electroless palladium immersion gold (ENEPIG) surface finish of printed circuit board (PCB) are investigated and a proper solution is presented. Computational chemistry is first employed to understand the process and experiments are then designed to verify the proposed ideas. A $PdCl_2$ activator which has relatively weak chemical bonding to the epoxy resin is introduced to prevent the formation of palladium seeds on the epoxy resin and a couple of operational measures such as increasing HCl concentration and lowering the temperature of Pd activation process are executed to prevent a further hydrolysis of $PdCl_2$ to more stable $Pd(OH)_2$ in aqueous solution. Computational chemistry provides thermodynamic backgrounds for experiments and their results. This combined approach is expected to be very useful in the research of relevant processes.

PCB 표면처리 및 공정 약품 기술 동향

  • Kim, Ik-Beom
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.77-77
    • /
    • 2014
  • 솔더링과 와이어본딩이 가능한 ENEPIG (Electroless Nickel/Electroless Palladium/Immersion Gold) 를 중심으로 미세회로 기판에 적용할 수 있는 표면처리 및 공정 약품을 소개하고자 한다.

  • PDF

Solderability of thin ENEPIG plating Layer for Fine Pitch Package application (미세피치 패키지 적용을 위한 thin ENEPIG 도금층의 솔더링 특성)

  • Back, Jong-Hoon;Lee, Byung-Suk;Yoo, Sehoon;Han, Deok-Gon;Jung, Seung-Boo;Yoon, Jeong-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.83-90
    • /
    • 2017
  • In this paper, we evaluated the solderability of thin electroless nickel-electroless palladium-immersion gold (ENEPIG) plating layer for fine-pitch package applications. Firstly, the wetting behavior, interfacial reactions, and mechanical reliability of a Sn-3.0Ag-0.5Cu (SAC305) solder alloy on a thin ENEPIG coated substrate were evaluated. In the wetting test, maximum wetting force increased with increasing immersion time, and the wetting force remained a constant value after 5 s immersion time. In the initial soldering reaction, $(Cu,Ni)_6Sn_5$ intermetallic compound (IMC) and P-rich Ni layer formed at the SAC305/ENEPIG interface. After a prolonged reaction, the P-rich Ni layer was destroyed, and $(Cu,Ni)_3Sn$ IMC formed underneath the destroyed P-rich Ni layer. In the high-speed shear test, the percentage of brittle fracture increased with increasing shear speed.

Comparative Study of Interfacial Reaction and Drop Reliability of the Sn-3.0Ag-0.5Cu Solder Joints on Electroless Nickel Autocatalytic Gold (ENAG) (Electroless Nickel Autocatalytic Gold (ENAG) 표면처리와 Sn-Ag-Cu솔더 간 접합부의 계면반응 및 취성파괴 신뢰성 비교 연구)

  • Jun, So-Yeon;Kwon, Sang-Hyun;Lee, Tae-Young;Han, Deog-Gon;Kim, Min-Su;Bang, Jung-Hwan;Yoo, Sehoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.3
    • /
    • pp.63-71
    • /
    • 2022
  • In this study, the interfacial reaction and drop impact reliability of Sn-Ag-Cu (SAC) solder and electroless nickel autocatalytic gold (ENAG) were studied. In addition, the solder joint properties with the ENAG surface finish was compared with electroless nickel immersion gold (ENIG) and electroless nickel electroless palladium immersion gold (ENEPIG). The IMC thickness of SAC/ENAG and SAC/ENEPIG were 1.15 and 1.12 ㎛, respectively, which were similar each other. The IMC thickness of the SAC/ENIG was 2.99 ㎛, which was about two times higher than that of SAC/ENAG. Moreover, it was found that the IMC thickness of the solder joint was affected by the metal turnover (MTO) condition of the electroless Ni(P) plating solution, and it was found that the IMC thickness increased when the MTO increased from 0 to 3. The shear strength of SAC/ENEPIG was the highest, followed by SAC/ENAG and SAC/ENIG. It was found that when the MTO increased, the shear strength was lowered. In terms of brittle fracture, SAC/ENEPIG was the lowest among the three joints, followed by SAC/ENAG and SAC/ENIG. Likewise, it was found that as MTO increased, brittle fracture increased. In the drop impact test, it was confirmed that the 0 MTO condition had a higher average number of failures than the 3 MTO condition, and the average number of failures was also higher in the order of SAC/ENEIG, SAC/ENAG, and SAC/ENIG. As a result of observing the fracture surface after the drop impact, it was found that the fracture was between the IMC and the Ni(P) layer.

Effect of Reflow Number and Surface Finish on the High Speed Shear Properties of Sn-Ag-Cu Lead-free Solder Bump (리플로우 횟수와 표면처리에 따른 Sn-Ag-Cu계 무연 솔더 범프의 고속전단 특성평가)

  • Jang, Im-Nam;Park, Jai-Hyun;Ahn, Yong-Sik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.3
    • /
    • pp.11-17
    • /
    • 2009
  • The drop impact reliability comes to be important for evaluation of the life time of mobile electronic products such as cellular phone. The drop impact reliability of solder joint is generally affected by the kinds of pad and reflow number, therefore, the reliability evaluation is needed. Drop impact test proposed by JEDEC has been used as a standard method, however, which requires high cost and long time. The drop impact reliability can be indirectly evaluated by using high speed shear test of solder joints. Solder joints formed on 3 kinds of surface finishes OSP (Organic Solderability Preservation), ENIG (Electroless Nickel Immersion Gold) and ENEPIG (Electroless Nickel Electroless Palladium Immersion Gold) was investigated. The shear strength was analysed with the morphology change of intermetallic compound (IMC) layer according to reflow number. The layer thickness of IMC was increased with the increase of reflow number, which resulted in the decrease of the high speed shear strength and impact energy. The order of the high speed shear strength and impact energy was ENEPIG > ENIG > OSP after the 1st reflow, and ENEPIG > OSP > ENIG after 8th reflow.

  • PDF

Effects of Ni-P Bath on the Brittle Fracture of Sn-Ag-Cu Solder/ENEPIG Solder Joint (ENEPIG/Sn-Ag-Cu 솔더 접합부의 취성 파괴에 미치는 무전해 니켈 도금액의 영향)

  • Kim, Kyoung-Ho;Seo, Wonil;Kwon, Sang-Hyun;Kim, Jun-Ki;Yoon, Jeong-Won;Yoo, Sehoon
    • Journal of Welding and Joining
    • /
    • v.35 no.3
    • /
    • pp.1-6
    • /
    • 2017
  • The effect of metal turnover (MTO) of electroless Ni plating bath on the brittle fracture behavior of electroless nickel electroless palladium immersion gold (ENEPIG)/Sn-3.0wt%Ag-0.5wt%Cu(SAC305) solder joint was evaluated in this study. The MTOs of the electroless Ni for the ENEPIG surface finish were 0 and 3. As the MTO increased, the interfacial IMC thickness increased. The brittle fracture behavior of the ENEPIG/SAC305 solder joint was evaluated with high speed shear (HSS) test. The HSS strength decreased with increasing the MTO of the electroless Ni bath. The brittle fracture increased with increasing the shear speed of the HSS test. The percentage of the brittle fracture for the 3 MTO sample was much higher than that for the 0 MTO sample.

Effect of Shearing Speed on High Speed Shear Properties of Sn1.0Ag0.5Cu Solder Bump on Various UBM's (다양한 UBM층상의 Sn0Ag0.5Cu 솔더 범프의 고속 전단특성에 미치는 전단속도의 영향)

  • Lee, Wang-Gu;Jung, Jae Pil
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.3
    • /
    • pp.237-242
    • /
    • 2011
  • The effect of shearing speed on the shear force and energy of Sn-0Ag-0.5Cu solder ball was investigated. Various UBM (under bump metallurgy)'s on Cu pads were used such as ENEPIG (Electroless Nickel, Electroless Palladium, Immersion Gold; Ni/Pd/Au), ENIG (Electroless Nickel, Immersion Gold; Ni/Au), OSP (Organic Solderability Preservative). To fabricate a shear test specimen, a solder ball, $300{\mu}m$ in diameter, was soldered on a pad of FR4 PCB (printed circuit board) by a reflow soldering machine at $245^{\circ}C$. The solder bump on the PCB was shear tested by changing the shearing speed from 0.01 m/s to 3.0 m/s. As experimental results, the shear force increased with a shearing speed of up to 0.6 m/s for the ENIG and the OSP pads, and up to 0 m/s for the ENEPIG pad. The shear energy increased with a shearing speed up to 0.3 m/s for the ENIG and the OSP pads, and up to 0.6 m/s for the ENEPIG pad. With a high shear speed of over 0 m/s, the ENEPIG showed a higher shear force and energy than those of the ENIG and OSP. The fracture surfaces of the shear tested specimens were analyzed, and the fracture modes were found to have closer relationship with the shear energy than the shear force.

Effect of Heat Treatment on Mechanical Reliability of Solder Joints in LED Package (LED 패키지 솔더 접합부의 기계적 신뢰성에 미치는 열처리의 영향)

  • Ko, Min-Kwan;Ahn, Jee-Hyuk;Lee, Young-Chul;Kim, Kwang-Seok;Yoon, Jeong-Won;Jung, Seung-Boo
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.1
    • /
    • pp.71-77
    • /
    • 2012
  • We studied the effect of heat treatment on the microstructures and mechanical strength of the solder joints in the Light Emitting Diode (LED) packages. The commercial LED packages were mounted on the a flame resistance-4 (FR4) Printed Circuit Board (PCB) in the reflow process, and then the joints were aged at $125^{\circ}C$ for 100, 200, 300, 500 and 1000 hours, respectively. After the heat treatment, we measured the shear strength of the solder joints between the PCB and the LED packages to evaluate their mechanical property. We used Pb-free Sn-3.0Ag-0.5Cu solder to bond between the LED packages and the PCBs using two different surface finishes, Electroless Nickel-Immersion Gold (ENIG) and Electroless Nickel-Electroless Palladium-Immersion Gold (ENEPIG). The microstructure of the solder joints was observed by a scanning electron microscope (SEM). (Cu,Ni)6Sn5 intermetallic compounds (IMCs) formed between the solder and the PCB, and the thickness of the IMCs was increased with increasing aging time. The shear strength for the ENIG finished LED package increased until aging for 300 h and then decreased with increasing aging time. On the other hand, in the case of an ENEPIG finished LED package, the shear strength decreased after aging for 500 h.