• Title/Summary/Keyword: Electrodermal Activity Measurement System (EDAMS)

Search Result 2, Processing Time 0.015 seconds

Electrodermal Activity at Palms according to Pressure Stimuli applied to the Scapula

  • Kim, Jae-Hyung;Park, Gun-Cheol;Baik, Sung-Wan;Jeon, Gye-Rok
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.7
    • /
    • pp.1137-1145
    • /
    • 2016
  • The system for measuring the electrodermal activity (EDA) signal occurring at the sweet glands in the human body was implemented in this study. The EDA measurement system (EDAMS) consisted of an algometer and the bio-potential measurement system (BPMS). Three experiments were performed using EDAMS. First, the linearity of the output voltage corresponding to the pressure being applied to an algometer was evaluated. The linearity of output voltage according to the pressure was 0.956. Second, the amplitude and the latency of the EDA signal at the left palm was obtained while applying the pressure stimuli to the left and right scapula. The latency of EDA signal was shorter whereas the amplitude of EDA signal was higher when the pressure applied was applied to the left scapula. Third, the amplitude and latency of the EDA was measured at left and right palm while increasing the pressure stimuli to the left scapula. The latency of EDA signal at left and right palm was decreased according to the intensity of pressure stimulus applied to the left scapula. However, the latency of the EDA signals did not show the linearity with respect to the pressure stimuli.

Electrodermal Activity at the Left Palm and Finger in Accordance with the Pressure Stimuli Applied to the Left Scapula

  • Kim, Jae Hyung;Kim, Su Sung;Son, Jung Man;Kim, Yung Jae;Baik, Sung Wan;Jeon, Gye Rok
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.235-242
    • /
    • 2016
  • A system for measuring the electrodermal activity (EDA) signal occurring at the sweat glands in the left palm and left finger of the human body was implemented in this study. The EDA measurement system (EDAMS) consisted of an algometer, a biopotential measurement system (BPMS), and a PC. Two experiments were performed to evaluate the function and clinical applicability of EDAMS. First, an experiment was carried out on the linearity of the voltage and the pressure that comprised the output signals of the algometer used for applying a pressure stimulus. Second, the amplitude of the EDA signal acquired from the electrode attached to the left palm or finger was measured while increasing the pressure stimulus of the algometer. When the pressure stimulus of the algometer applied to the left scapula was increased, the amplitude of the EDA signal increased. The amplitude of the EDA signal at the left palm was observed to be greater than that at the left finger. The amplitude of the EDA signal was observed to increase in a relatively linear relation with the intensity of the pressure stimuli. In addition, the latency of the EDA signal acquired from the electrode attached to the left palm or finger was measured while increasing the pressure stimulus of the algometer. When the pressure stimulus of the algometer applied to the left scapula was increased, the latency of the EDA signal decreased. The latency of the EDA signal at the palm was observed to be less than that at the finger. The latency of the EDA signal was observed to decrease nonlinearly with the pressure stimuli.