• 제목/요약/키워드: Electrode form

검색결과 373건 처리시간 0.022초

용액코팅된 탄소나노튜브 전극의 광전기적 성질 (Opto-electrical properties of solution based carbon nanotube electrode)

  • 우종석;김선영;한중탁;이건웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.394-394
    • /
    • 2007
  • Transparent conductive films can serve as a critical component in displays, solar cells, lasers, optical communication devices, and solid state lighting. Carbon nanotube (CNT) based transparent conductive films are fabricated on glass and polymer substrates. CNTs typically exist in form of quasi-crystalline bundles or highly entangled bundles containing tens of individual nanotubes. To achieve full potential, CNTs must be dispersed in a solvent or other organic media. CNTs are acid treated with nitric acid then the stable dispersion of CNTs in polar solvent such as alcohols, DMF, etc. is achieved by sonication. The solubility of CNTs correlates well with the area ratio of the D and G bands from Raman spectrum. Thin films are formed from well dispersed CNT solutions using spray coating method. CNT thin films exhibit a sheet resistance ($R_s$) of nearby $10^3\;{\Omega}/sq$ with a transmittance of around 80% on the visible light range, which is attributed by excellent dispersion and interaction among CNTs, solvents and polymeric binders.

  • PDF

K-GIC의 합성 및 리튬이온이차전지에서의 부극특성 (The Preparation of K-GIC and its Anodic Characteristics of Lithium Ion Secondary Battery)

  • 김현중;이철태
    • 공업화학
    • /
    • 제9권5호
    • /
    • pp.786-790
    • /
    • 1998
  • 리튬이온이차전지에 사용되는 탄소부극의 성능을 향상시키기 위하여 새로운 탄소부극으로서 K-GIC를 합성하여 전기화학적 특성을 조사하였다. K의 삽입량은 KCl 수용액의 농도가 $2>3>1mole/{\ell}$의 순으로 증가하였으며 $1mole/{\ell}$의 KCl 수용액으로 처리하였을 때 K와 C의 mole 비는 156~388 carbon/potassium이었다. K-GIC의 합성조건을 $1mole/{\ell}$ KCl 수용액으로 $700^{\circ}C$에서 1시간으로 처리하였을 때 가장 우수한 리튬의 삽입과 탈삽입 거동을 나타냈으며 가역성 또한 우수하였다.

  • PDF

무정형 탄소의 입도분포에 따른 리튬이온이차전지의 탄소부극 특성 (The Effect of Particle Size Distribution of the Nongraphitic Carbon on the Performance of Negative Carbon Electrode in Lithium Ion Secondary Battery)

  • 김현중;이철태
    • 공업화학
    • /
    • 제9권5호
    • /
    • pp.781-785
    • /
    • 1998
  • 무정형탄소인 petroleum cokes를 대상으로 attrition mill을 이용하여 6~48시간 동안 분쇄한 후 이를 $700^{\circ}C$에서 1시간 동안 열처리한 후 재료특성과 전기화학적 특성을 조사하였다. 분쇄에 의한 효과에 의하여 입도분포와 BET 비표면적의 변화가 발생하였으며 내부의 층간거리도 변화시킬 수 있었다. 이들의 재료특성 변화에 의한 cyclic voltammogram과 충 방전 특성과의 관계를 조사한 결과, 분쇄시간 12~24시간에서 분쇄된 후의 경우가 $6{\sim}8{\mu}m$의 평균입도를 가지며 비교적 큰 층간거리와 표면적을 가질 때 전기화학적 특성이 비교적 우수하였다.

  • PDF

전착법으로 제작한 Ni(OH)2 나노 시트의 핵 형성과 성장 거동에 미치는 헥사-메틸렌테트라민(HMT)의 영향 (Effect of Hexa-methylenetetramine (HMT) on Nucleation and Growth Behaviors of Ni(OH)2 Nanosheets Produced by Electrodeposition)

  • 김동연;손인준;최문현
    • 한국표면공학회지
    • /
    • 제54권1호
    • /
    • pp.37-42
    • /
    • 2021
  • Electrodeposition is a synthetic method that allows fine control of the nucleation and growth factors of metals and is a suitable method for studying the nucleation and growth of Ni(OH)2. Hexa-methylenetetramine (HMT) helps to form Ni(OH)2 nanosheets by increasing the OH- of the nickel precursor solution and helps to improve the electrochemical properties of the electrode. In this study, the structural properties of Ni(OH)2 nanosheets according to the HMT concentration change using electrodeposition were studied. As the concentration of HMT increased, the size and thickness of the Ni(OH)2 nanosheet adsorbed on the surface increased and porosity increased. Also, the Scharifker-Hills nucleation theory model and experimental data were compared. In conclusion, the nanosheet shape of the HMT 7.5 mM sample electrodeposited with -0.85 V vs. Ag/AgCl grew most uniformly, and the best result was obtained as an electrode material for a pseudocapacitor.

전하 분리와 축적을 통한 물의 슬로싱 현상 기반 전기에너지 발생 장치 (Water-Sloshing-Based Electricity Generating Device via Charge Separation and Accumulation)

  • 차경환;허덕재;이상민
    • 한국전기전자재료학회논문지
    • /
    • 제35권1호
    • /
    • pp.98-101
    • /
    • 2022
  • Liquid-based Triboelectric nanogenerator (L-TENG) is one of the alternatives to solid-based Triboelectric nanogenerator (S-TENG) because of the absence of surface damage which can decrease the durability of the generator. However, the L-TENG also has an obvious drawback of significantly lower output than that of S-TENG. This article produces water-sloshing-based electricity generating device (W-ED) with a new design of L-TENG that improves electrical output in portable form. The dual-electrode system, consisting of closed-loop circuit and inner electrode which enables water to contact directly in the bottle, can generate the open-circuit voltage and the short-circuit current of up to 348 V and 5.1 mA, respectively. By investigating the motion of water for each frequency, we propose that W-ED is suitable device for a variety of human motions. We expect that W-ED can be applied in small electrical devices or sensors in daily-use items.

ECG 생체신호 측정을 위한 실용적 U-헬스케어 의복개발 (Development of the Practical Garment Apparatus to Measure Vital Sign of ECG for U-Health Care)

  • 박혜준;홍경희;김승환;신승철
    • 한국의류학회지
    • /
    • 제31권2호
    • /
    • pp.292-299
    • /
    • 2007
  • Development of portable device measuring the vital sign continuously with no limit of time and space is absolutely prerequisite for the U-health care that grafts the ubiquitous concept into medical system. Accordingly, it requires to develop a garment style apparatus for measuring vital-sign that is easy to wear on for a long time period. This study suggests a method to improve the insulation of electric cable and the skin adhesion of electrode by integrating the electric conductive material to garment, in order to develop a garment apparatus for measuring ECG for U-health care. Results of the research are as follows; In order to provide the adjacent conductive yarns with insulation, braid with narrow woven end was interlaced using polyester yarn. As a result, the direct contact between electric conductive yarns was restrained, which would be interposed into pin-tuck structured cable. Washable silicone gel applied around the electrode made of electric conductive fabric improved the adhesion, which prevents electrodes from dropping off from the skin surface during body movement. ECG signals on the human subject were tested using the garment apparatus developed by the above method. And the result was that the clear QRS wave formation in the typical form of ECG could be measured in both conditions of still and moving state as well. The result of this study is expected to contribute for the production of U-health care related medical apparatus by accelerating the practical uses of the garment measuring vital sign at a reasonable price.

다전극 탐상을 통한 토중 매설배관 피복결함 탐상 정확도의 개선 (Enhancing the Reliability of Coating Flaw Detection for Pipes Buried in Soil Using a Multi-Electrode Detector)

  • 김민기;임부택;김기태;장현영;박흥배;김영식
    • Corrosion Science and Technology
    • /
    • 제19권5호
    • /
    • pp.265-280
    • /
    • 2020
  • External corrosion of buried pipes can be controlled using both coating and cathodic protection. However, deterioration of the coating can occur due to several reasons. The detection reliabilty of coating flaw detection methods is affected by interference such as metal objects connected to rectifiers and copper grids. When performing parallel direct current voltage gradient (DCVG) inspection, a sine wave form without potential reversal in voltage gradient appears in the area where the interference exists. However, this area may be not identified using existing methods. The objective of this study was to determine the effect of analyzing direction on the reliability of coating flaw detection of pipes buried in soil using a multi-electrode detector. DCVG on the buried pipe was measured along the buried pipe. This measurement parallel to the pipe was repeated. Measured data were analyzed for parallel, vertical, and diagonal directions. The reliability of coating flaw detection was improved by up to 46.4% compared to the conventional method.

구리 나노 큐브를 전기 도금한 레이저 유도 그래핀 전극 기반의 글루코스 측정용 유연 센서 개발 (Development of Flexible Glucose Measurement Sensor Based on Copper Nanocubes Electroplated Laser Induced Graphene Electrode)

  • 김건종;김태헌;박정호
    • 전기학회논문지
    • /
    • 제67권3호
    • /
    • pp.413-418
    • /
    • 2018
  • In this paper, we describe the development of a non-enzymatic glucose sensor based on copper nanocubes(Cu NCs) electroplated laser induced graphene(LIG) electrodes which can detect a certain range of glucose concentrations. $CO_2$ laser equipment was used to form LIG electrodes on the PI film. This fabrication method allows easy control of the LIG electrode size and shape. The Cu NCs were electrochemically deposited on the LIG electrodes to improve electron transfer rates and thus enhancing electrocatalytic reaction with glucose. The average sheet resistances before and after electroplating were $15.6{\Omega}/{\Box}$ and $19.6{\Omega}/{\Box}$, respectively, which confirmed that copper nanocubes were formed on the laser induced graphene electrodes. The prepared electrode was used to measure the current according to glucose concentration using an electrochemical method. The LIG electrodes with Cu NCs demonstrated a high degree of sensitivity ($1643.31{\mu}A/mM{\cdot}cm^2$), good stability with a linear response to glucose ranging from 0.05 mM to 1 mM concentration, and a limit of detection of 0.05 mM. In order to verify that these electrodes can be used as flexible devices, the electrodes were bent to $30^{\circ}$, $90^{\circ}$, and $180^{\circ}$ and cyclic voltammetry measurements were taken while the electrodes were bent. The measured data showed that the peak voltage was almost constant at 0.42 V and the signal was stable even in the flexed condition. Therefore, it is concluded that these electrodes can be used in flexible sensors for detecting glucose in the physiological sample like saliva, tear or sweat.

SiC MOSFET 소자에서 금속 게이트 전극의 이용 (Metal Gate Electrode in SiC MOSFET)

  • 방욱;송근호;김남균;김상철;서길수;김형우;김은동
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.358-361
    • /
    • 2002
  • Self-aligned MOSFETS using a polysilicon gate are widely fabricated in silicon technology. The polysilicon layer acts as a mask for the source and drain implants and does as gate electrode in the final product. However, the usage of polysilicon gate as a self-aligned mask is restricted in fabricating SiC MOSFETS since the following processes such as dopant activation, ohmic contacts are done at the very high temperature to attack the stability of the polysilicon layer. A metal instead of polysilicon can be used as a gate material and even can be used for ohmic contact to source region of SiC MOSFETS, which may reduce the number of the fabrication processes. Co-formation process of metal-source/drain ohmic contact and gate has been examined in the 4H-SiC based vertical power MOSFET At low bias region (<20V), increment of leakage current after RTA was detected. However, the amount of leakage current increment was less than a few tens of ph. The interface trap densities calculated from high-low frequency C-V curves do not show any difference between w/ RTA and w/o RTA. From the C-V characteristic curves, equivalent oxide thickness was calculated. The calculated thickness was 55 and 62nm for w/o RTA and w/ RTA, respectively. During the annealing, oxidation and silicidation of Ni can be occurred. Even though refractory nature of Ni, 950$^{\circ}C$ is high enough to oxidize it. Ni reacts with silicon and oxygen from SiO$_2$ 1ayer and form Ni-silicide and Ni-oxide, respectively. These extra layers result in the change of capacitance of whole oxide layer and the leakage current

  • PDF

Transparent Oxide Thin Film Transistors with Transparent ZTO Channel and ZTO/Ag/ZTO Source/Drain Electrodes

  • Choi, Yoon-Young;Choi, Kwang-Hyuk;Kim, Han-Ki
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.127-127
    • /
    • 2011
  • We investigate the transparent TFTs using a transparent ZnSnO3 (ZTO)/Ag/ZTO multilayer electrode as S/D electrodes with low resistivity of $3.24{\times}10^{-5}$ ohm-cm, and high transparency of 86.29% in ZTO based TFTs. The Transparent TFTs (TTFTs) are prepared on glass substrate coated 100 nm of ITO thin film. On atomic layer deposited $Al_2\;O_3$, 50 nm ZTO layer is deposited by RF magnetron sputtering through a shadow mask for channel layer using ZTO target with 1 : 1 molar ratio of ZnO : $SnO_2$. The power of 100W, the working pressure of 2mTorr, and the gas flow of Ar 20 sccm during the ZTO deposition. After channel layer deposition, a ZTO (35 nm)/Ag (12 nm)/ZTO(35 nm) multilayer is deposited by DC/RF magnetron sputtering to form transparent S/D electrodes which are patterned through the shadow mask. Devices are annealed in air at 300$^{\circ}C$ for 30 min following ZTO deposition. Using UV/Visible spectrometer, the optical transmittances of the TTFT using ZTO/Ag/ ZTO multilayer electrodes are compared with TFT using Mo electrode. The structural properties of ZTO based TTFT with ZTO/Ag/ZTO multilayer electrodes are analyzed by high resolution transmission electron microscopy (HREM) and X-ray photoelectron spectroscopy (XPS). The transfer and output characterization of ZTO TTFTs are examined by a customized probe station with HP4145B system in are.

  • PDF