• 제목/요약/키워드: Electrode Plates

Search Result 102, Processing Time 0.021 seconds

Optimization for Underwater Welding of Marine Steel Plates (선박용 강판의 수중 용접 최적화에 관한 연구)

  • 오세규
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.20 no.1
    • /
    • pp.49-59
    • /
    • 1984
  • Optimizing investigation of characteristics of underwater welding by a gravity type arc welding process was experimentally carried out by using six types of domestic coated welding electrodes for welding of domestic marine structural steel plates (KR Grade A-1, SWS41A, SWS41B,) in order to develop the underwater welding techniques in practical use. Main results obtained are summarized as follows: 1. The absorption speed of the coating of domestic coated lime titania type welding-electrode became constant at about 60 minutes in water and it was about 0.18%/min during initial 8 minutes of absorption time. 2. Thus, the immediate welding electrode could be used in underwater welding for such a short time in comparison with the joint strength of in-atmosphere-and on-water-welding by dry-, wet-or immediate-welding-electrode. 3. By bead appearance and X-ray inspection, ilmenite, limetitania and high titanium oxide types of electrodes were found better for underwater-welding of 10 mm KR Grade A-1 steel plates, while proper welding angle, current and electrode diameter were 6$0^{\circ}C$, above 160A and 4mm respectively under 28cm/min of welding speed. 4. The weld metal tensile strength or proof stress of underwater-welded-joints has a quadratic relationship with the heat input, and the optimal heat input zone is about 13 to 15KJ/cm for 10mm SWS41A steel plates, resulting from consideration upon both joint efficiency of above-100% and recovery of impact strength and strain. Meanwhile, the optimal heat input zone resulting from tension-tension fatigue limit above the base metal's of SWS41A plates is 16 to 19KJ/cm. Reliability of all the empirical equations reveals 95% confidence level. 6. The microstructure of the underwater welds of SES41A welded in such a zone has no weld defects such as hydrogen brittleness with supreme high hardness, since the HAZ-bond boundary area adjacent to both surface and base metal has only Hv400 max with the microstructure of fine martensite, bainite, pearlite and small amount of ferrite.

  • PDF

Grounding Characteristic Analysis of Plate Electrodes

  • Kim, Sung-Sam;Kim, Ju-Chan;Koh, Hee-Seog
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.4
    • /
    • pp.53-60
    • /
    • 2007
  • In this study, an experiment on the efficient construction method of plate electrodes, the influence of electric potential interference in plate electrodes, and building foundations were explored. The experimental result of the electric potential measurement was taken on the basis of the direction of movement and the condition in which the plate electrodes are laid underground in building foundations. It shows that the construction method of laying the plate electrodes vertically exhibits a more efficient reduction of electric potential in a diagonal direction and on an X axis than laying plates horizontally. For plate electrode construction in an area that has uniform conditions, the parallel joint construction method is more effective than a single construction to reduce earth electrical potential and ground resistance. In addition, a straight arrangement performs well in ground efficiency, compared to the parallel arrangement.

Experimental Study on the Discharge Electrode of A Two-Stage Electrostatic Air Cleaner (2단 평행판 전기집진기의 방전부 특성 실험)

  • Kim, I.S.;Lee, J.O.;Kim, Y.J.;Choi, H.O.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.1
    • /
    • pp.27-34
    • /
    • 1993
  • The two-stage electrostatic air cleaner is a particle control device that uses electrical forces to move particles in the flowing gas stream onto collector plates. Despite a general understanding of electrostatic air cleaner operation and their successful use in industry, many questions regarding flow, electric fields and particle collection have remained unanswered. In this paper, an experimental investigation for designing the discharge electrode, including ionizer wire diameter, plate length and wire-to-plate spacing, is carried out. The electrical conditions, namely the electric field intensity, the space current and the particle charge intensity, in wire-plate electrostatic air cleaner are reported and examined.

  • PDF

Development of Single-layer-structured Glucose Biosensor

  • Lee, Young-Tae;Kwon, Min Su
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.83-87
    • /
    • 2015
  • In this paper, we fabricated a low-cost glucose sensor with a simpler structure and fabrication process than the existing glucose sensor. The currently used glucose sensor has a three-layer structure with upper, middle, and bottom plates; here, we fabricated a single-layer glucose sensor using only a printing and dispensing process. We successfully fabricated the glucose sensor using a simple method involving the formation of an electrode and insulator layer through a 2- or 3-step printing process on plastic or paper film, followed by the dispensing of glucose oxidase solution on the electrode. Cyclic voltammetry (CV) and cyclic amperometry (CA) measurements were used to evaluate the characteristics of the fabricated single-layer glucose sensor. Also, its sensitivity was analyzed through glucose-controlled blood measurements. Hence, a low-cost single-layer glucose sensor was fabricated with evaluation of its characteristics demonstrating that it has useful application in medicine.

Characteristics of the Multi-kW Class Polymer Electrolyte Membrane Fuel Cell Stack for a Hybrid Electric Golf Cart

  • I.H. Oh;S.J. Shin;J.H. Jo;Park, S.K.;H.Y. Ha;S.A. Hong;S.Y. Ahn;Lee, Y.C.;S.A. Cho
    • Journal of Energy Engineering
    • /
    • v.11 no.3
    • /
    • pp.254-261
    • /
    • 2002
  • The fabrication method for the main components of the polymer electrolyte membrane fuel cell stack such as electrodes, membrane-electrode assemblies, and bipolar plates was established for the effective electrode area of 240 ㎠. A counter-flow type 100-cell stack was fabricated by using the above components and then a maximum power of 7.44 kW for H$_2$/O$_2$ and 5.56 kW for H$_2$/air could be obtained at 70$\^{C}$ and 1 atm. It was seen that the distribution of the OCV for unit cells in the stack was uniform but the voltage deviation increased as the load increased due to the IR drop and the electrode polarization. The stack was applied to the power source of the fuel cell/battery hybrid electric golf car. It produced about 1 kW at a room temperature operation during the test run, which occupied about 43% of the total power required by the 2.3 kW motor.

Effect of Curing on Positive Plate Behavior in Lead-Acid Battery (숙성조건에 따른 연축전지용 양극 극판의 특성 연구)

  • 김상필;남기윤
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.177-181
    • /
    • 1995
  • Lead-acid battery is used widely as a power source in the automobile, industrial machines, folk lifts U.P.S etc. But this battery has man\ulcorner disadvantages such as heavy low energy density, environment problem etc. In this paper, we have studied the physicochemical and electrochemical properties of lead-acid battery positive plates with regard to the method of curing. It has been observed that curing conditions strongly influence electrode composition and electrchemical performance.

  • PDF

Noise Reduction Design of Plasma Display Panel (플라즈마 디스플레이의 저소음 설계)

  • Park, Dae-Kyong;Kweon, Hae-Sub;Jang, Dong-Seob
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.369.2-369
    • /
    • 2002
  • For the evaluation of the plasma display panel (PDP)'s noise, vibration and sound characteristics of fanless PDP are measured and investigated. PDP is a type of two-electrode vacuum tube which operatres on the same principle as a household fluorescent light. An inert gas such as argon or neon is injected between two glass plates on which transparent electrodes have been formed, and the glass is illuminated by generating discharge. (omitted)

  • PDF

Characteristics of Fluorine-Doped Tin Oxide Film Coated on SUS 316 Bipolar Plates for PEMFCs (ECR-MOCVD를 이용하여 연료 전지 분리판에 코팅된 FTO막의 특성 연구)

  • Park, Ji-Hun;Hudaya, C.;Jeon, Bup-Ju;Byun, Dong-Jin;Lee, Joong-Kee
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.3
    • /
    • pp.283-291
    • /
    • 2011
  • Polymer electrolyte membrane fuel cells (PEMFCs) use the bipolar plate of various materials between electrolyte and contact electrode for the stable hydrogen ion exchange activation. The bipolar plate of various materials has representatively graphite and stainless steel. Specially, stainless steels have advantage for low cost and high product rate. In this study, SUS 316 was effectively coated with 600 nm thick F-doped tin oxide (SnOx:F) by electron cyclotron resonance-metal organic chemical vapor deposition and investigated in simulated fuel cell bipolar plates. The results showed that an F-doped tin oxide (SnOx:F) coating enhanced the corrosion resistance of the alloys in fuel cell bipolar plates, though the substrate steel has a significant influence on the behavior of the coating. Coating SUS 316 for fuel cell bipolar plates steel further improved the already excellent corrosion resistance of this material. After coating, the increased ICR values of the coated steels compared to those of the fresh steels. The SnOx:F coating seems to add an additional resistance to the native air-formed film on these stainless steels.

Simultaneous Removal of Gas and Dust by Activated Carbon Coated Electrode

  • Kim, Kwang Soo;Park, Jung O;Lee, Ju Haeng;Jun, Tae Hwan;Kim, Ilho
    • Environmental Engineering Research
    • /
    • v.18 no.4
    • /
    • pp.229-234
    • /
    • 2013
  • This study aimed to develop a new dust collecting system equipped with an activated carbon (A.C.) coated electrode. Before fabrication, pre-treatment of A.C. was performed to remove metal ions within the A.C. to enlarge its specific surface area. Then, pre-treated A.C., black carbon, polyvinyl acetate (PVAc), and methanol were mixed to make a gel compound, which was coated onto aluminum plates to fabricate electrodes. The optimal mixing ratio of A.C., black carbon, PVAc, and methanol was found to be 10 g: 2 g: 3 g: 20 mL. After fabrication, the electrodes were used in the batch-type experiment for $NH_3$ and $H_2S$ removal. The reduction rates of the gases were high at the beginning and slowly reduced with time. Dust collection experiments were conducted in continuous flow, with various voltages applied. Compared to 5 kV, dust removal efficiency was 1.5 times higher when 10 kV was applied. Increasing the number of electrodes applied also increased the collecting efficiency. The correlation coefficient between actual collecting efficiency and trend line was higher than 99%. Consequently, the novel dust collection system equipped with A.C. coated electrode appears to be a promising substitute for existing dust-control devices.