• Title/Summary/Keyword: Electrode Plates

Search Result 102, Processing Time 0.017 seconds

Neutral Electrolyzed Water for Prevention of Dental Caries (기존 구강청결제를 대체할 수 있는 치아우식 예방을 위한 전기분해수)

  • Lee, Kyam
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.43 no.3
    • /
    • pp.306-312
    • /
    • 2016
  • Gargle solution has typically been used for the prevention of oral infectious disease such as dental caries and periodontitis. However, the use of most gargle solutions is controversial in application for children because some gargle solutions have harmful side effects. Electrolyzed water is generated by passed an electric current and has antimicrobial activity. The purpose of this study was to investigate and compare the efficacy of electrolyzed water in various conditions for eliminating cariogenic bacteria. Electrolyzed water was generated by a platinum electrode in the presence of sodium chloride at various concentrations. Streptococcus mutans and Streptococcus sobrinus were cultivated into a brain heart infusion broth. After harvesting planktonic bacteria, the pellets were treated with the electrolyzed water and commercial gargle solutions and plated on a mitis-salivarius agar plate. Also, the anti-biofilm activity of the electrolyzed water and commercial gargle solutions was investigated after biofilm formation of S. mutans and S. sobrinus. The bacteria in the biofilm were plated onto a mitis-salivarius agar plate. The plates were incubated, and the colony forming unit was measured. The electrolyzed water containing sodium chloride showed significant antibacterial activity against S. mutans and S. sobrinus as well as some gargle solutions. Furthermore, the electrolyzed water had more disruptive effect on the biofilm of S. mutans and S. sobrinus and killed more bacteria in the biofilm than commercial gargle solutions. The results demonstrate that electrolyzed water may be a useful gargle solution for prevention of dental caries.

Study on the channel of bipolar plate for PEM fuel cell (고분자 전해질 연료전지용 바이폴라 플레이트의 유로 연구)

  • Ahn Bum Jong;Ko Jae-Churl;Jo Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.2 s.23
    • /
    • pp.15-27
    • /
    • 2004
  • The purpose of this paper is to improve the performance of Polymer electrolyte fuel cell(PEMFC) by studying the channel dimension of bipolar plates using commercial CFD program 'Fluent'. Simulations are done ranging from 0.5 to 3.0mm for different size in order to find the channel size which shoves the highst hydrogen consumption. The results showed that the smaller channel width, land width, channel depth, the higher hydrogen consumption in anode. When channel width is increased, the pressure drop in channel is decreased because total channel length Is decreased, and when land width is increased, the net hydrogen consumption is decreased because hydrogen is diffused under the land width. It is also found that the influence of hydrogen consumption is larger at different channel width than it at different land width. The change of hydrogen consumption with different channel depth isn't as large as it with different channel width, but channel depth has to be small as can as it does because it has influence on the volume of bipolar plates. however the hydrogen utilization among the channel sizes more than 1.0mm which can be machined in reality is the most at channel width 1.0, land width 1.0, channel depth 0.5mm and considered as optimum channel size. The fuel cell combined with 2cm${\times}$2cm diagonal or serpentine type flow field and MEA(Membrane Electrode Assembly) is tested using 100W PEMFC test station to confirm that the channel size studied in simulation. The results showed that diagonal and serpentine flow field have similarly high OCV and current density of diagonal (low field is higher($2-40mA/m^2$) than that of serpentine flow field under 0.6 voltage, but the current density of serpentine type has higher performance($5-10mA/m^2$) than that of diagonal flow field under 0.7-0.8 voltage.

  • PDF