• 제목/요약/키워드: Electroconductive

검색결과 70건 처리시간 0.037초

무가압소결(無加壓燒結)한 ${\beta}-SiC-ZrB_2$ 복합체(複合體)의 파괴인성(破壞忍性)과 전기전도성(電氣傳導性)에 미치는 기공(氣孔)의 영향 (Effect of Porosity on the Fracture Toughness and Electrical Conductivity of Pressureless Sintered ${\beta}-SiC-ZrB_2$ Composites)

  • 신용덕;권주성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.847-849
    • /
    • 1998
  • The effect of $Al_{2}O_{3}$ additives on the microstructure, mechanical and electrical properties of ${\beta}$-SiC+39vol.%$ZrB_2$ electroconductive ceramic composites by pressureless sintering were investigated. The ${\beta}$-SiC+39vol.%$ZrB_2$ ceramic composites were pressureless sintered by adding 4, 8, 12wt.% $Al_{2}O_{3}$ powder as a liquid forming additives at $1950^{\circ}C$ for 1h. Phase analysis of composites by XRD revealed mostly of $\alpha$-SiC(6H), $ZrB_2$ and weakly $\alpha$-SiC(4H), $\beta$-SiC(15R) phase. The relative density of composites was lowered by gaseous products of the result of reaction between $\beta$-SiC and $Al_{2}O_{3}$ therefore, porosity was increased with increased $Al_{2}O_{3}$ contents. The fracture toughness of composites was decreased with increased $Al_{2}O_{3}$ contents, and showed the maximum value of $1.4197MPa{\cdot}m^{1/2}$ for composite added with 4wt.% $Al_{2}O_{3}$ additives. The electrical resistivity of ${\beta}$-SiC+39vol.%$ZrB_2$ electroconductive ceramic composite was increased with increased $Al_{2}O_{3}$ contents, and showed positive temperature coefficient resistance (PTCR) in the temperature from $25^{\circ}C$ to $700^{\circ}C$.

  • PDF

SiC-$TiB_2$ 전도성(電導性) 복합체(複合體)의 특성(特性)에 미치는 가압(加壓)의 영향(影響) (Effect of Pressure on Properties of the SiC-$TiB_2$ Electroconductive Ceramic Composites)

  • 신용덕;서재호;주진영;고태헌;이정훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1228-1229
    • /
    • 2008
  • The composites were fabricated 61[vol.%] ${\beta}$-SiC and 39[vol.%] $TiB_2$ powders with the liquid forming additives of 12[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid by pressure or pressureless annealing at 1,650[$^{\circ}C$] for 4 hours. Reactions between SiC and transition metal $TiB_2$ were not observed in the microstructure and the phase analysis of the SiC-$TiB_2$ electroconductive ceramic composites. Phase analysis of SiC-$TiB_2$ composites by XRD revealed mostly of ${\alpha}$-SiC(6H), $TiB_2$, and In Situ $YAG(Al_5Y_3O_{12})$. The relative density, the flexural strength and the Young's modulus showed the highest value of 88.32[%], 136.43[MPa] and 52.82[GPa] for pressure annealed SiC-$TiB_2$ composites at room temperature. The electrical resistivity showed the lowest value of 0.0162[${\Omega}{\cdot}cm$] for pressure annealed SiC-$TiB_2$ composite at 25[$^{\circ}C$]. The electrical resistivity of the pressure annealed SiC-$TiB_2$ composite was positive temperature coefficient resistance (PTCR) but the electrical resistivity of the pressureless annealed SiC-$TiB_2$ composites was negative temperature coefficient resistance(NTCR) in the temperature ranges from 25[$^{\circ}C$] to 700[$^{\circ}C$].

  • PDF

液狀 燒結에 의한 ${\beta}$-SIC TiB$_2$系 導電性 複合體의 特性(Ⅱ) (Properties of ${\beta}$-SIC TiB$_2$ Electroconductive Ceramic Composites Densified by Liquid-Phase Sintering(Ⅱ))

  • 신용덕;임승혁;송준태
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제50권6호
    • /
    • pp.263-270
    • /
    • 2001
  • The mechanical and electrical properties of the hot-pressed and annealed ${\beta}-SiC-TiB_2$,/TEX> electroconductive ceramic composites were investigated as function as functions of the liquid forming additives of $Al_2O_3+Y_2O_3$. The result of phase analysis of composites by XRD revealed ${\alpha}$-SiC(6H), $TiB_2$,/TEX>, and YAG($Al_5Y_3O_{12}$) crystal phase. The relative density and the mechanical properties of composites were increased with increasing $Al_2O_3+Y_2O_3$ contents in pressureless annealing method because YAG of reaction between $Al_2O_3$ was increased. The flexural strength showed the highest value of 458.9 MPa for composites added with 4 wt% $Al_2O_3+Y_2O_3$ additives in pressed annealing method at room temperature. Owing to crack deflection, crack bridging, phase transition and YAG of fracture toughness mechanism, the fracture toughness showed 7.1 MPa ${\cdot}\;m^{1/2}$ for composites added with 12 wt% $Al_2O_3+Y_2O_3$ additives in pressureless annealing method at room temperature. The electrical resistivity and the resistance temperature coefficient showed the lowest value of $6.0{\times}10^{-4}\;{\Omega}\;{\cdot}\;cm(25\'^{\circ}C}$ and $3.0{\times}10^{-3}/^{\circ}C$ for composite added with 12 wt% $Al_2O_3+Y_2O_3$ additives in pressureless annealing method at room temperature, respectively. The electrical resistivity of the composites was all positive temperature coefficient resistance(PTCR) in the temperature ranges from 25 $^{\circ}C$ to 700 $^{\circ}C$.

  • PDF

전극과 유전체장벽간의 접착물질의 물성변화가 오존발생특성에 미치는 영향 (Effects of Properties of Binder between Electrode and Dielectric Barrier on Ozone Generation Characteristics)

  • 박승록;김진규;김형표
    • 조명전기설비학회논문지
    • /
    • 제16권6호
    • /
    • pp.119-125
    • /
    • 2002
  • 무성방전형 오존발생장치에서 고농도의 오존을 발생시키기 위해서는 방전공간의 온도를 낮게 유지시켜주는 것이 중요하다. 이때, 방전공간에서 발생된 열을 외부로 전달하기 위한 유전체장벽과 전극간의 접착물질과 접착방법은 전기적, 열적 관점에서 볼 때 방전에 큰 영향을 미치게 된다. 따라서 접착물질과 접착방법은 오존발생에 중요한 변수가 될 수 있다. 본 연구는 접착물질과 방법이 오존발생에 미치는 영향을 조사한 실험적인 결과이다. 접착물질의 종류로는 방열재료로 사용되는 실리콘 화합물질, 전기적인 도전성을 가지는 수지를 사용하였으며 이들의 물성변화를 위해 첨가물질로 차콜(charcoal)을 사용하였다. 결과적으로 접착물질(실리콘 화합물)이 사용되었을 때가 사용하지 않았을 때보다 같은 전압에서 많은 오존발생량을 보여주었다. 또한 접착물질이 사용되었을 때는 순수한 실리콘 화합물이 사용된 경우가 도전성을 가지는 접착물질이 사용되었을 때보다 많은 오존발생량을 보여주었다.

$\beta-SIC-ZrB_{2}$복합체의 파괴인성과 전기전도도에 미치는 YAG의 영향 (Effect of YAG on the Fracture Toughness and Electrical Conductivity of $\beta-SIC-ZrB_{2}$ Composites)

  • 신용덕;주진영;윤세원;황철;박미림
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.839-842
    • /
    • 2000
  • The mechanical and electrical properties of the hot-pressed and annealed $\beta$-SiC-ZrB$_2$ electroconductive ceramic composites were investigated as function of the liquid forming additives of $Al_2$O$_3$+Y$_2$O$_3$. Phase analysis of composites by XRD revelled $\alpha$ -SiC(6H), ZrB$_2$, and YAG(Al$_{5}$ Y$_3$O$_{12}$ ). Owing to crack deflection, crack bridging, phase transition and YAG of fracture toughness mechanism, the fracture toughness showed the highest value of 6.3MPa.m$^{1}$2/ for composites added with 24wt% $Al_2$O$_3$+Y$_2$O$_3$additives at room temperature. The resistance temperature coefficient respectively showed the value of 2.46$\times$10$^{-3}$ , 2.47$\times$10$^{-3}$ , 2.52$\times$ 10$^{-3}$ $^{\circ}C$ for composite added with 16, 20, 24wt% A1$_2$O$_3$+Y$_2$O$_3$additives. The electircal resistivity of the composites was all positive temperature coefficient resistance(PTCR) in the temperature range of $25^{\circ}C$ to 90$0^{\circ}C$.

  • PDF

Modification of C/C Composite Bipolar Plate by Addition of Electro-Conductive Carbon Black

  • Ryu, Seung-Kon;Hwang, Taek-Sung;Lee, Seung-Goo;Lee, Sun-A;Kim, Chang-Soo
    • Carbon letters
    • /
    • 제2권3_4호
    • /
    • pp.165-169
    • /
    • 2001
  • Modification of C/C composite bipolar plate for improving electrical conductivity was carried out by addition of electroconductive carbon black (EC-CB). Carbon black was carefully mixed to methanol-containing phenolic resin, impregnated into 2D-carbon fabrics, hot pressed and then carbonized to obtain composite plate. Inclusion of electro-conductive carbon black enhanced the electrical conductivity of the C/C composites by increasing the conduction path. Addition of 10 vol% carbon black increased the electrical conductivity from 5.5/${\Omega}cm$ to 32/${\Omega}cm$ and reduced the crack formation by filling effect, resulting in the increase of flexural properties of composite plate. However, at carbon black content over 10 vol%, flexural properties decreased by delaminating role of excess carbon black at the interface in C/C composites.

  • PDF

The Study of the Electroconductive Liquids Flow in a Conduction Magnetohydrodynamic Pump

  • Naceur, Sonia;Kadid, Fatima Zohra;Abdessemed, Rachid
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권5호
    • /
    • pp.252-256
    • /
    • 2016
  • This paper deals the study of a linear MHD pump solution used to eliminate and to avoid the dangers of the mercury appearing through pollution and contamination. The formulation of the magnetohydrodynamic phenomena is derived from Maxwell and Navier-Stokes equations are solved using the finite volume method. Simulation results highlight the performance of the pump such as the electromagnetic force, the velocity, and the pressure, the application of Ansys-Fluent software validation these results.

Nanospace Confinement of Conducting Polymers using Mesoporous Silica and Organosilica

  • Itahara, Hiroshi;Inagaki, Shinji;Asahi, Ryoji
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.277-277
    • /
    • 2006
  • Conducting polymers (e.g. poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylen vinylene] (MEH-PPV)) confined in one-dimensional nanoscale channels of mesoporous materials, are expected to lead the novel applications for electroconductive and optoelectronic devices. We investigated the adsorption behavior of MEH-PPV on organically surface-modified mesoporous silica (FSM-16) and mesoporous organosilica. The amount of the confined MEH-PPV was found to strongly depend on the surface modifications of the mesoporous materials. The optical absorption edge of the confined MHE-PPV was clearly blue-shifted when compared to that of a free MHE-PPV.

  • PDF

Pseudocapacitive Behavior of Lignin Nanocrystals Hybridized onto Reduced Graphene Oxide for Renewable Energy Storage Material

  • Kim, Yun Ki;Park, Ho Seok
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.488.1-488.1
    • /
    • 2014
  • As the society demands the high performance energy storage devices, development of efficient and renewable energy storage materials has been a topic of interest. Here, we report pseudocapacitive behaviors of biopolymer (lignin) that was confined onto reduced graphene oxides (RGOs) for a renewable energy storage system. The strong surface confinement of quinone groups onto the electroconductive RGOs created the renewable hybrid electrodes for supercapacitors (SCs) with fast and reversible redox charge transfer. As a result, the pseudocapacitors fabricated with the hybrid electrodes of lignin and RGO presented the outstanding electrochemical performances of remarkable rate and cyclic performances:~4% capacitance drop after 3000 cycles and a maximum capacitance of 432 F g-1.

  • PDF

SiC계 세라믹 발열체 경제성 평가 (Economical Estimation of SiC Ceramic Heater)

  • 조현섭;유인호
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2009년도 춘계학술발표논문집
    • /
    • pp.450-453
    • /
    • 2009
  • Compositional design and optimization of processing parameters are key factors for controlling and improving the properties of SiC-based electroconductive ceramic composites. Compare economic estimation of SiC ceramic heater with sheathe heater are as followings. (1) Temperature rising time of sheath heater is 1.1 times faster than SiC ceramic heater. (2) Heating insulation of SiC ceramic heater is 2.7 times larger than sheath heater. If SiC ceramic heater is one body type of a product application, contact resistance will decrease. I think that temperature initial rising time is faster than now. The more SiC ceramic heater is used for a long time, the more economic benefit is larger in the view point of heat insulation.

  • PDF