• Title/Summary/Keyword: Electrochromic Properties

Search Result 77, Processing Time 0.033 seconds

Electrochromism of Various Conducting Polymers with Enhanced Functionality (기능성을 향상시킨 다양한 전도성 고분자의 전기 변색 현상)

  • Ko Heung-Cho;Moon Bong-Jin;Lee Hoo-Sung
    • Polymer(Korea)
    • /
    • v.30 no.5
    • /
    • pp.367-372
    • /
    • 2006
  • Electrochromic materials based on conducting polymers with pendant chromophores as well as their electrochromic properties are described. The conducting polymers described aye polypyrrole, polythiophene, poly(3,4-ethylenedioxythiophene), poly (cyclopentadithiophene), and poly (1,4-bis [2- (3,4-ethylenedioxy) thienyl] benzene). The chromophores described are viologen and perylenetetra-carboxylic diimide. When the wavelength ranges of absorption of the conducting polymer and the chromophore aye not overlapping, multiple electrochromism was achieved. When the wavelength ranges are largely overlapping, higher contrast was achieved. An easy method for prediction of the film thickness for maximum contrast of a given electrochromic material is also described.

Electrochromic Property of a Conductive Polymer Film Fabricated with Vapor Phase Polymerization (증기중합으로 제조된 전도성 고분자 박막의 전기 변색 특성)

  • Lee, Ji-Yea;Kim, Yu-Na;Kim, Eun-Kyoung
    • Membrane Journal
    • /
    • v.20 no.1
    • /
    • pp.8-12
    • /
    • 2010
  • Poly(3,4-ethylenedioxythiophene) (PEDOT), which has the highest stability in conducting polymer was employed to electrochromic (EC) film and studied about electrochromic properties according to the film fabrication method. PEDOT films were coated by two different methods, electropolymerization (EP) and vapor phase polymerization (VPP). Both of PEDOT films showed dark blue color at dedoped neutral state. Spectroelectrochemistry, switching ability and stability of the devices were investigated by UV-Vis Spectrophotometer and Cyclic voltammetry. Surface morphologies of the PEDOT VPP film at oxidized and reduced state were obtained by AFM. The average surface roughness of the PEDOT-VPP film was 50 nm and more homogeneous than that of the PEDOT-EP. The EC property from the PEDOT-VPP film was improved compared to that of the PEDOT-EP film, to show a response time of 1.5 sec, transmittancechange of 49%, and coloration efficiency of 402.

Preparation of $WO_3$ Films by CVD and their Application in Electrochromic Devices (화학기상 증착법을 이용하여 제조된 텅스텐 산화막의 전기변색 소자 응용 연구)

  • Jung, Hun;SunWoo, Changshin;Kim, Do-Heyoung
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.405-410
    • /
    • 2011
  • A study on chemical vapor deposition(CVD) of $WO_3$ and the electrochromic properties of the CVD $WO_3$ films have been carried out. The crystalinity, purity, and growth rate of the films depending on substrate temperatures are investigated. The highest growth rate is $8{\mu}m/min$ at the substrate temperatures above $300^{\circ}C$ and the estimated activation energy for overall film growth is about 45.9 kJ/mol at the temperatures of $225{\sim}275^{\circ}C$, where the CVD process is controlled by a surface reaction kinetics. The films grown below $275^{\circ}C$ are amorphous, while those deposited above $300^{\circ}C$ are crystalline. The effects of thickness and deposition temperature of the $WO_3$ films on electrochromic activity are also investigated. The coloration efficiency of the films increases with increase in film thickness and decrease in deposition temperature.

Characterization of $V_2O_5$ thin films as a counter electrode for complementary electrochromic devices (상보형 전기변색소자용 $V_2O_5$박막의 대향전극 특성)

  • 조봉희;김영호
    • Electrical & Electronic Materials
    • /
    • v.9 no.7
    • /
    • pp.690-695
    • /
    • 1996
  • We have systematically investigated the characterization of V$_{2}$O$_{5}$ thin films as a counter electrode for lithium based complementary electrochromic devices. The V$_{2}$O$_{5}$ thin films were prepared by thermal vacuum evaporation with varing the substrate temperature and film thickness. In electrochromic devices for smart windows, the WO$_{3}$ thin films with 400-800 nm thickness require to be capable of reversibly injection 10-15 mC/cm$^{2}$ of lithium, which is readily accomplished charge-balanced switching in a V$_{2}$O$_{5}$ thin films with 100-150nm thick. The V$_{2}$O$_{5}$ thin films produces considerably small changes in optical modulation properties in the visible and near infrared region(500-1100 nm) compared to the amorphous WO$_{3}$ thin films on 10-15 mC/cm$^{2}$ of lithium injection and the V$_{2}$O$_{5}$ thin films can therefore act as a counter electrode to WO$_{3}$ in a lithium based complementary clectrochromic devices. After 10$^{5}$ coloration/bleaching switching time, the degradation does not occurs and the devices exhibit a stable optical modulation in V$_{2}$O$_{5}$ thin films. It has shown that the injected lithium ion amounts in crystalline V$_{2}$O$_{5}$ thin films with the same thickness is large by 3-5 mC/cm$^{2}$ of lithium compared to the amorphous thin films in the same driving conditions. Therefore, to optimize the device performance, it is necessary to choose an appropriate film thickness and crystallinity of V$_{2}$O$_{5}$ for amorphous WO$_{3}$ film thickness as a working electrode.

  • PDF

Tungsten Oxide/Vanadium Oxide Complementary Eelctrochromic Device (상보형 $WO_3/V_2O_5$ 일렉트로크로믹 소자)

  • Seo, D.K.;Kim, J.;Cho, B.H.;Kim, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1220-1222
    • /
    • 1995
  • In the design of a complementary electrochromic windows based on $WO_3/Li^+$ conducting electrolyte/$V_2O_5$ system, a characterization of electrochromic properties of $WO_3/V_2O_5$ complementary devices as a function of thickness combinations is necessary in order to predict such as the safe operating voltage, the optical modulation range and the optical switching response. In this paper, the effects of $WO_3\;and\;V_2O_5$ thin films thickness combinations on device performance were systematically investigated.

  • PDF

Durability Improvement of Electrochromic Tungsten Oxides Films

  • Yang, J.Y.;Kim, J.W.;Kang, G.H.;K.D.Ko;Lee, G.D.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.157-157
    • /
    • 1999
  • Electrochromic tungsten oxide films were prepared by the electron beam deposition, and the dependence of the electrochemical stability and the optical properties on the titanium concentration, and on the annealing temperature, that was investigated. coloring and bleaching experiments were repeated by cyclic voltammetry in a propylene carbonate solution of LiClO4. Spectrometry was used to assess the stability of the transmittance in the degraded films. Tungsten oxide films with titanium contents of about 10~15 mol% were found to be most stable, undergoing the least degradation during the repeated for coloring and bleaching cycles. The reason for this small amount of degradation was the reduction of lithium ion trapping sites in the films, which results in an increased durability. Tungsten oxide films with titanium contents of about 20 mol% were annealed at 20$0^{\circ}C$ for 1 hour, and this results showed that durability of films were increased.

  • PDF

The electrochromic properties of nickel oxide films (니켈산화물 박막의 전기적착색특성)

  • 이길동
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.2
    • /
    • pp.127-135
    • /
    • 1999
  • Nickel oxide films were prepard by using the electron beam evaporation technique. Coloring and bleaching experiments for cyclic durability were repeated in KOH electrolyte by cyclic voltammetry. Visible spectrophtometry was used to assess the stability of the transmittance in the degraded films. X-ray photoelectron spectroscopy results showed that the grain surface are oxygen-rich compared to the grain interiors in a NiO film. Open circuit memory of colored films is about 400hours in lN KOH. The rate of self discharge was evaluated by measuring the transmittance at 550nm of a fully oxidized NiO film. The rate of self discharge was increased polynomially with time and the film is nearly bleached after about 400hours. It was also found that the degraded film by repeated cycles in the KOH solution changed the grain shape of film surface The film prepared under a vacuum pressure of $3\times10^{-4}$ mbar was found to be rather stable when subjected to the repeated coloring and bleaching cycles in KOH electrolyte. Band theory applied to explain the electrochromic mechanism was discussed.

  • PDF