• Title/Summary/Keyword: Electrochemical reactor

Search Result 93, Processing Time 0.024 seconds

Electrochemical Regeneration of FAD by Catalytic Electrode Without Electron Mediator and Biochemical Reducing Power

  • JEON SUNG JIN;SHIN IN HO;SANG BYUNG IN;PARK DOO HYUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.281-286
    • /
    • 2005
  • We created a new graphite-Cu(II) electrode and found that the electrode could catalyze FADH$_2$ oxidation and FAD reduction coupled to electricity production and consumption, respectively. In a fuel cell with graphite-Cu(II) anode and graphite-Fe(III) cathode, the electricity was produced by coupling to the spontaneous oxidation of FADH$_2$ Fumarate and xylose were not produced from the enzymatic oxidation of succinate and xylitol without FAD, respectively, but produced with FAD. The production of fumarate and xylose in the reactor with FAD electrochemically regenerated was maximally 2- 5 times higher than that in the reactor with FAD. By using this new electrode with catalytic function, a bioelectrocatalysts can be engineered; namely, oxidoreductase (e.g., lactate dehydrogenase) and FAD can function for biotransformation without an electron mediator and second oxidoreductase for cofactors recycling.

Computer Modeling of the Power Generation System Using Polymer Electrolyte Fuel Cell (고분자 전해질형 연료전지 발전 시스템의 전산모사)

  • Baek, Young-Soon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.5
    • /
    • pp.460-466
    • /
    • 2008
  • In this study, a computer modeling work has been performed for the power generation system using polymer electrolyte fuel cell with Aspen Plus general purpose chemical process simulator. Stoichiometric reactor module was used for the modeling of reformer for the production of hydrogen. For the modeling of the electrochemical reaction, Gibbs reactor module built-in Aspen Plus was utilized. SRK equation of state model was selected for the proper simulation of the overall fuel cell system.

Development of Chemical Decontamination Process of Stainless Steel for Reactor Coolant Pump (원자로 냉각재 펌프용 스테인리스강에 대한 화학적 제염 공정 개발)

  • Kim, Seong-Jong;Han, Min-Su;Kim, Jeong-Il;Kim, Ki-Joon
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.5
    • /
    • pp.234-240
    • /
    • 2007
  • As a reactor coolant pump (RCP) is operated in the nuclear power system for a long time, so its surface is continuously contaminated by radioactive scales. In order to maintain for RCP internals, a special chemical decontamination process should be used to reduce the radiation from the RCP surface. In this study, applicable possibility in chemical decontamination for RCP was investigated for the various stainless steels. The stainless steel (STS) 304 showed the best electrochemical properties for corrosion resistance and the lowest weight loss ratio in chemical decontamination process model 3-1 than other materials. However, the pitting corrosion was generated in both STS 415 and STS 431 with the increasing numbers of cycle. The intergranular corrosion in STS 415 was sporadically observed. The sizes of their pitting corrosion were also increased with increasing cycle numbers.

Evaluation on Design Factors of Electrolytic Flotation Reactor by Measuring Polarization Curve (분극곡선 측정을 통한 전해부상조의 설계인자 평가)

  • Lim, Bong-Su;Jin, Jing-Zhu;Choi, Chan-Soo
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.2
    • /
    • pp.244-250
    • /
    • 2007
  • This study was carried out to obtain the optimum design factors for an eletrolytric flotation reactor. When the effluent of the leachate treatment facility was treated under the condition of 10 volts, 30 minutes, at the Al-Al electrode system; COD removal efficiency was 45%, and total phosphorus removal efficiency was 98%. The high removal efficiency was caused by the fact that phosphate was removed by leaching $Al^{3+}$ from two electrodes. The leachate containing high ammonium nitrogen concentration was treated by a batch test under the condition of 60 minutes reaction time and added chloride ion; ammonium nitrogen removal efficiency was 89%. This high efficiency was affected by added chloride ion to wastewater. To find the optimum current density and voltage of the leachate containing chloride ion (ratio of $Cl^-/NH_4-N$ is 11) a electrochemical polarization curve was used. These values were found to be $4.5mA/cm^2$ and about 2.1 V, respectively. When C-Al electrode system was used at a batch test, the total nitrogen removal efficiency was increased by 1.8 to 3.3 times, compared to Al-Al electrode system due to high $Cl_2$ gas production.

A Study on the Performance of Catalysts for the Recombination of Oxyhydrogen Gas Generated in Secondary Battery (이차전지내 발생하는 수소-산소 혼합기체 재결합용 촉매의 성능 측정 및 이론적 모델 연구)

  • Kim, Yong-Sik;Chang, Min-Hwan;Ju, Jeh-Beck
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.1
    • /
    • pp.71-77
    • /
    • 2014
  • The performance of catalysts for the recombination of oxyhydrogen gas was measured and compared with the results obtained from theoretical model. The oxyhydrogen gas was generated by the electrolysis cell and recombined through the fixed bed catalytic reactor. The yield that is the ratio of water-amount produced to the water-amount consumed in the electrolysis cell was increased with the increase of KOH concentration in electrolysis cell and the applied current. The catalyst 1 showed the best performance and the yield was under 60 %. The faradic yield calculated by Faraday's law showed about 100% in maximum with catalyst 1. The production rate of water generated by the recombination was 5-40 g/day dependent on the flow rate of mixed gas. Considering the results calculated from the pseudo-homogeneous catalytic reactor model, the hot point inside the reactor was moved to the direction of outlet and the maximum temperatures were $440-480^{\circ}K$ when the gas flow rate increased. The production rate of water calculated from the theoretical model showed good agreement with experimental results below the flow rate of $0.5cm^3/sec$, but there were much differences above that flow rate.

The Enhancement Effect of the Electrochemical Deposition in the Recovering Process of Cu from CuSO4 Solution (황산구리 용액으로부터의 구리회수공정에서 초음파에 의한 전착반응의 증대효과)

  • Yoon, Yong-Soo;Hong, In-Kwon;Lee, Jae-Dong;Jeong, Il-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.5 no.2
    • /
    • pp.199-208
    • /
    • 1994
  • In this study, the ultrasound which provides the properties of mixing, and surface cleaning effect, the increase of the effective reaction surface area and the enhancement of the effective collision frequency, was used to enhance the recovering efficiency of Cu from the Cu-ion containning waste water. The ultrasonic reactor used in this study was designed and constructed for improving the disadvantage of the existing ultrasonic reactor. From the experimental result and its analysis, we obtained following conclusions. 1. The ultrasound increased the rate of electrochemical deposition to 582.2% in maximum at the condition of $0.1M-CuSO_4$, and 2.1 V-overpotential. 2. The enhancement effect of ultrasound induced by the reduction of diffusion layer thickness was 277.8% in maximum and induced by the other effect except for the reduction effect of the diffusion layer thickness was 253.6% in maximum at $0.1M-CuSO_4$ and 2.1V overpotential. 3. This study gave the possibility of the scale-up of ultrasonic reactor and in particular, ultrasonic reactor would be effective in the treatment of waste water containning a low concentration of Cu ion.

  • PDF

Reductive Dechlorination of Chlorinated Phenols in Bio-electrochemical Process using an Electrode as Electron Donor (전극을 전자공여체로 이용한 생물전기화학공정에서의 염소화페놀의 탈염소화)

  • Jeon, Hyun-Hee;Pak, Dae-Won
    • KSBB Journal
    • /
    • v.22 no.3
    • /
    • pp.134-138
    • /
    • 2007
  • It was investigated whether an electrode could serve as an electron donor for biological reductive dechlorination of chlorinated phenols in the bio-electrochemical process. There was no dechlorination in the absence of current and scanning electron microscope image showed that the electrode surface was covered with microorganisms. As a result, the electrode attached cells was responsible for reductive dechlorination. Also, initial high chlorinated phenol concentration such as $437mg/{\ell}$ was rapidly reduced within 5 hours. The maximum dechlorination rate using Monod equation was $5.95mg{\ell}$-h($cm^2$ (electrode surface area)) in the bio-electrochemical reactor.

Effect of Argon Addition on Properties of the Boron-Doped Diamond Electrode (아르곤 가스의 주입이 붕소 도핑 다이아몬드 전극의 특성에 미치는 효과)

  • Choi, Yong-Sun;Lee, Young-Ki;Kim, Jung-Yuel;Lee, You-Kee
    • Korean Journal of Materials Research
    • /
    • v.28 no.5
    • /
    • pp.301-307
    • /
    • 2018
  • A boron-doped diamond(BDD) electrode is attractive for many electrochemical applications due to its distinctive properties: an extremely wide potential window in aqueous and non-aqueous electrolytes, a very low and stable background current and a high resistance to surface fouling. An Ar gas mixture of $H_2$, $CH_4$ and trimethylboron (TMB, 0.1 % $C_3H_9B$ in $H_2$) is used in a hot filament chemical vapor deposition(HFCVD) reactor. The effect of argon addition on quality, structure and electrochemical property is investigated by scanning electron microscope(SEM), X-ray diffraction(XRD) and cyclic voltammetry(CV). In this study, BDD electrodes are manufactured using different $Ar/CH_4$ ratios ($Ar/CH_4$ = 0, 1, 2 and 4). The results of this study show that the diamond grain size decreases with increasing $Ar/CH_4$ ratios. On the other hand, the samples with an $Ar/CH_4$ ratio above 5 fail to produce a BDD electrode. In addition, the BDD electrodes manufactured by introducing different $Ar/CH_4$ ratios result in the most inclined to (111) preferential growth when the $Ar/CH_4$ ratio is 2. It is also noted that the electrochemical properties of the BDD electrode improve with the process of adding argon.

The Investigation of Treatment of Pistachio Processing Industrial Wastewater by Electrochemical Methods in Terms of Chemical Oxygen Demand and Total Phenol Removal

  • Alper Erdem Yilmaz;Baybars Ali Fil;Murat Tolga Yilmaz;Serkan Bayar;Zuhal Koksal
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.178-189
    • /
    • 2024
  • This work aims to investigate the efficiency of electrocoagulation (EC) of pistachio processing industrial wastewater (PPIW) using the continuous EC process. The tubular reactor made of stainless steel with an internal diameter of 60 mm was used as a cathode electrode. The effect of some parameters was examined on the removal of chemical oxygen demand (COD) and total phenols (TP) removal efficiency. The influences of the initial pH of wastewater (from 4 to 8), flow rate (from 25 to 125 mL/min), current density (from 7 to 21 mA/cm2), and supporting electrolyte type (NaCl, NaNO3, and Na2SO4), supporting electrolyte concentration (from 10 to 100 mg/L NaCl) on removal efficiency were investigated to determine the best experimental conditions. The examination of the physico-chemical parameters during the EC treatment showed that the best removal efficiency was obtained under conditions where the flow rate was 25 mL/min (20 min reaction time), the pH value was 5.2, and the current density was 21 mA/cm2 has set. Under these experimental conditions, COD and TP removal efficiency were found to be 75% and 97%, respectively, while energy consumption was 18.5 kW h/m3. The study results show that the EC can be applied to PPIW pre-treatment.