• Title/Summary/Keyword: Electrochemical modification

Search Result 157, Processing Time 0.02 seconds

Electrodeposition of Cu2Se Semiconductor Thin Film on Se-Modified Polycrystalline Au Electrode

  • Lee, Wooju;Myung, Noseung;Rajeshwar, Krishnan;Lee, Chi-Woo
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.140-145
    • /
    • 2013
  • This study describes the electrodeposition of $Cu_2Se$ thin films with a two-step approach that is based on the initial modification of polycrystalline Au electrode with a selenium overlayer followed by a cathodic stripping of the layer as $Se^{2-}$ in a 1 M lactic acid electrolyte containing $Cu^{2+}$ ions. For this two-step approach to be effective, the $Cu^{2+}$ reduction potential should be shifted to more negative potentials passed potentials for the reduction of Se to $Se^{2-}$. This was accomplished by the complexation of $Cu^{2+}$ ions with lactic acid. The resultant $Cu_2Se$ films were characterized by linear sweep voltammetry combined with electrochemical quartz crystal microgravimetry, UV-vis absorption spectrometry and Raman spectroscopy. Photoelectrochemical experiments revealed that $Cu_2Se$ synthesized thus, behaved as a p-type semiconductor.

Control of Surface Chemistry and Electrochemical Performance of Carbon-coated Silicon Anode Using Silane-based Self-Assembly for Rechargeable Lithium Batteries

  • Choi, Hyun;Nguyen, Cao Cuong;Song, Seung-Wan
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2519-2526
    • /
    • 2010
  • Silane-based self-assembly was employed for the surface modification of carbon-coated Si electrodes and their surface chemistry and electrochemical performance in battery electrolyte depending on the molecular structure of silanes was studied. IR spectroscopic analyses revealed that siloxane formed from silane-based self-assembly possessed Si-O-Si network on the electrode surface and high surface coverage siloxane induced the formation of a stable solid-electrolyte interphase (SEI) layer that was mainly composed of organic compounds with alkyl and carboxylate metal salt functionalities, and PF-containing inorganic species. Scanning electron microscopy imaging showed that particle cracking were effectively reduced on the carbon-coated Si when having high coverage siloxane and thickened SEI layer, delivering > 1480 mAh/g over 200 cycles with enhanced capacity retention 74% of the maximum discharge capacity, in contrast to a rapid capacity fade with low coverage siloxane.

Highly-sensitive Detection of Salvianolic Acid B using Alumina Microfibers-modified Electrode

  • Sun, Dong;Zheng, Xiaoyong;Xie, Xiafeng;Yang, Xiaofeng;Zhang, Huajie
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3357-3361
    • /
    • 2013
  • Alumina microfibers with porous structures were prepared through hydrothermal reaction, and then used to modify the surface of carbon paste electrode (CPE). After modification with alumina microfibers, the electrochemical activity of CPE was found to be greatly improved. On the surface of alumina microfibers-modified CPE, the oxidation peak current of salvianolic acid B, a main bioactive compound in Danshen with anti-oxidative and anti-inflammatory effects, was remarkably increased compared with that on the bare CPE surface. The influences of pH value, amount of alumina microfibers and accumulation time were studied. Based on the strong signal amplification effects of alumina microfibers, a novel electrochemical method was developed for the detection of salvianolic acid B. The linear range was from 5 ${\mu}gL^{-1}$ to 0.3 mg $L^{-1}$, and the detection limit was 2 ${\mu}gL^{-1}$ (2.78 nM) after 1-min accumulation. The new method was successfully used to detect salvianolic acid B in ShuangDan oral liquid samples, and the recovery was over the range from 97.4% to 102.9%.

Electrochemical Characteristics of HA Film on the Ti Alloy Using Pulsed Laser Deposition

  • Jeong, Yong-Hoon;Shin, Seung-Pyo;Chung, Chae-Heon;Kim, Sang-Sub;Choe, Han-Cheol
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.5
    • /
    • pp.395-400
    • /
    • 2012
  • In this study, we have investigated the surface morphology of hydroxyapatite (HA) coated Ti alloy surface using pulsed laser plating. The HA (tooth ash) films were grown by pulsed KrF excimer laser, film surfaces were analyzed for topology, chemical composition, crystal structure and electrochemical behavior. The Ti-6Al-4V alloy showed ${\alpha}$ and ${\beta}$ phase, Cp-Ti showed ${\alpha}$ phase and the HA coated surface showed HA and Ti alloy peaks. The HA coating layer was formed with $1-2{\mu}m$ droplets and grain-like particles, particles which were smaller than the HA target particle, and the composition of the HA coatings were composed of Ca and P. From the electrochemical test, the pitting potential (1580 mV) of HA coated Ti-6Al-4V alloy was higher than those of Cp-Ti (1060 mV) and HA coated Cp-Ti (1350 mV). The HA coated samples showed a lower current density than non-HA coated samples, whereas, the polarization resistance of HA coated samples showed a high value compared to non-HA coated samples.

A Study on the Electrochemical Properties Fabrication Process of Mg-Ca Sacrificial Anode for the Corrosion Protection of Steel Structures (철 구조물의 부식방지를 위한 Mg-Ca 희생양극의 전기화학적 특성과 제조에 관한 연구)

  • Park, Kang-Geun;Kim, Hye-Sung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.4 s.22
    • /
    • pp.73-80
    • /
    • 2006
  • It is an object of the present paper to investigate a electrochemical properties of Mg-based sacrificial anodes and the effect of calcium added from calcium chloride into magnesium on the melt protection during the melting. Electrochemical data will be correlated with processing control variables, and the microstructural change by the addition of CaCl2. Small addition of calcium into magnesium from CaCl2 imparts beneficial effect in electrochemical properties of Mg alloys, primarily, through microstructural modifications. In addition, the protection effect of the melts surface of Ca with low melting point modification is obtained by adding Ca not more than 0.6%.

  • PDF

Fabrication of Graphene-modified Indium Tin Oxide Electrode Using Electrochemical Deposition Method and Its Application to Enzyme Electrode (전기화학 증착법을 이용한 그래핀 개질 Indium Tin Oxide 전극 제작 및 효소 전극에 응용)

  • Wang, Xue;Shi, Ke;Kim, Chang-Joon
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.62-69
    • /
    • 2022
  • Graphene has a large surface area to volume ratio and good mechanical and electrical property and biocompatibility. This study described the electrochemical deposition and reduction of graphene oxide on the surface of indium tin oxide (ITO) glass slide and electrochemical characterization of graphen-modified ITO. Cyclic voltammetry was used for the deposition and reduction of graphene oxide. The surface of graphen-coated ITO was characterized using scanning electron microscopy and energy dispesive X-ray spectroscopy. The electrodes were evaluated by performing cyclic voltammetry and electrochemical impedance spectroscopy. The number of cycles and scan rate greatly influenced on the coverage and the degree of reduction of graphene oxide, thus affecting the electrochemical properties of electrodes. Modification of ITO with graphene generated higher current with lower charge transfer resistance at the electrode-electrolyte interface. Glucose oxidase was immobilized on the graphene-modified ITO and has been found to successfully generate electrons by oxidizing glucose.

Correlation between surface functionalities of nano-structured photo electrode and electrochemical response of dye sensitized solar cells

  • Dhayal, Marshal;Park, Gye-Choon;Park, Kyung-Hee;Gu, Hal-Bon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.57.1-57.1
    • /
    • 2010
  • Development of low cost hybrid functional nano-structured materials has great interest to enhance sensitivity of dye-sensitized solar cells and reduction of the production cost. In this talk we will discuss about using different processes to modify functional characteristics of photoelectrode and investigate effects of chemical modification without significant structural variation on to enhance performance of DSSCs. Efficient electron transportation between dye molecules and photoelectrode has been obtained by appropriate chemical modification and efficiency of DSSC has been significantly improved. A comparative analysis on effects of surface functional and electron states of photoelectrode on VOC and JSC has been also carried out to discuss effects of composite materials on physical structure and electronic properties to correlate enhanced performance of these devices.

  • PDF

Self-Assembly Modification of Perfluorosulfonic Acid Membranes for the Application to Direct Methanol Fuel Cells

  • Moon, Go-Young;Rhim, Ji-Won
    • Macromolecular Research
    • /
    • v.16 no.6
    • /
    • pp.524-531
    • /
    • 2008
  • The mitigation or elimination of methanol crossover for perfluorosulfonic acid fuel cell membranes has been investigated extensively for direct methanol fuel cell applications with the aim of increasing the electrochemical performance and enhancing the utilization rate of methanol. Self-assembly modifications by applying an oppositely charged polyelectrolyte to Nafion membranes were attempted in order to block or reduce methanol crossover while maintaining the other advantageous properties of Nafion membranes. It was reported that anionic polyallylamine hydrochloride (PAH) was the most efficient polyelectrolyte in reducing methanol crossover, and considerable cell performance was obtained even at a methanol feed concentration of 10 M.

Improved Photoluminescence from Light-Emitting Silicon Material by Surface Modification

  • 김동일;이치우
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.11
    • /
    • pp.1019-1023
    • /
    • 1995
  • A light-emitting silicon material was prepared by electrochemical etching of n-Si single crystal wafers in a solution of hydrofluoric acid and ethanol. Visible photoluminescence from the silicon was inhomogeneous and decayed rapidly in the ambient laboratory conditions or with photoirradiation. Substantial improvements in photoluminescence which include little-dependent luminescence peak energy with excitation energy variation and longer-lasting room temperature visible photoluminescence were achieved when the surface of photoluminescent silicon material was derivatized with the surface modifier of octadecylmercaptan. Surface modification of the photoluminescent silicon was evidenced by the measurements of contact angles of static water drops, FT-IR spectra and XPS data, in addition to changed photoluminescence. Similar improvements in photoluminescence were observed with the light-emitting silicon treated with dodecylmercaptan, but not with octadecane. The present results indicate that sulfurs of octadecylmercaptans or dodecylmercaptans appear to coordinate the surface Si atoms of LESi and perturb the surface states to significantly change the luminescent characteristics of LESi.